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Abstract
Skeleton should be the reduced object representation that conforms to human visual perception, and is very useful
in applications such as object matching, mesh representation, computer animation, etc. A novel skeletonization
algorithm to extract visually satisfactory skeleton from arbitrary 3D objects is proposed. The skeletonization can
deal with arbitrary shape representations, such as polygonal models or parametric surfaces. In implementation,
we choose triangulated models to represent 3D objects without losing generality.
The skeletonization algorithm contains two major steps. First, all the 3D model faces are regarded as charged
planes. We initiate seed points with negative charges from the 3D model vertices. These seed points are pushed
by electric-static force and they finally converge to local minimum positions. The force model we use here is
called "visible repulsive force", which is the sum of all repulsive forces derived from the visible charged planes.
In other words, faces that are invisible from the seed point do not contribute in the force model. Then, these
local minimum positions are connected to complete the skeleton. Every connection in the skeleton is determined
according to the neighborhood relationship defined by the 3D model edge connectivity information. Currently,
we have implemented an object deformation system and the generated skeletons are used to be the deformation
reference lines.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computation Geometry
and Object Modeling

1. Introduction

Skeleton is widely adopted in areas such as object matching
8, mesh representation5, computer animation22, collision
detection and mesh editing21. Since skeleton conforms more
to human perception than other shape descriptions do, it is
suitable for human-interacted applications.

However, the requirements for a skeleton differ with
applications. For example, object matching may need the
skeletons to preserve principal features such as morphology
(e.g. branching and termination) and geometrical informa-
tion, so that we can regard these skeletons as major keys and
use them to find object similarities. On the other hand, object
reconstruction needs the skeleton that can store complete ge-
ometrical information of the original object to guarantee that
we can use the skeleton to rebuild the object with minimal
error.

A traditional skeleton definition is medial axis transform
(MAT), which was proposed by Blum4. Medial axis trans-
form in 3D is the locus of the inscribe spheres inside an
object. MAT can describe the object surface precisely and
it is appropriate for surface reconstruction. However, this
characteristic is also a drawback: if the curvature of the ob-
ject surface varies everywhere (such as the object contains
many noise signals on the surface), MAT is going to produce
many undesired skeleton branches12 which is morphologi-
cally meaningless. Due to this reason, many previous studies
focus on how to simplify the noisy MAT skeleton by meth-
ods such as pruning16, 18.

In this paper, we present a skeleton extraction algorithm
based on visible repulsive force (VRF), a special force field
derived from visibility. For convenience, we name the ex-
tracted skeleton as visible domain skeleton, or VDS in short.
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VDS is a one-dimensional skeleton that maintains primary
morphology structure of the object. Therefore, it is a good
representation for morphologically meaningful objects, such
plants, animals and so on.

2. Previous Work

MAT skeleton has been widely studied for decades
6, 11, 15, 19, 20, 23. Under current implementations, two ap-
proaches are used to approximate MAT: Voronoi diagram
and distance field methods. Amenta et al.2 proposed a
Voronoi diagram method called the power crust algorithm
for MAT approximation and 3D surface reconstruction. It is
easy to understand that MAT is the subset of the Voronoi di-
agram if the input object is a polygonal model or point set.
The algorithm first computes the Voronoi diagram of a point
set, which is sampled from a 3D object. Then it determines
a set of polar ball, which takes the Voronoi vertex as cen-
ter and the surface of the ball can touch the nearest sample
points. By labeling the polar balls that are inside the object,
the object now can be represented with these interior polar
balls. Connecting the interior polar ball centers according to
the connectivity of the Voronoi diagram cells forms a good
approximation of the MAT.

Wade and Parent22 presented a distance field method for
automated control skeleton generation. The algorithm has
several steps. First, a Euclidean distance map is computed
to construct a discrete medial surface (DMS), which can be
regarded as discrete MAT approximation. A path creation
algorithm then generates a tree-structured set of voxel paths
spanning along the DMS. Simplification of these paths leads
to a control skeleton for the object. Their system produces
reasonably good control skeletons for 3D objects. Zhou and
Toga24 used a voxel-coding method, which is based on re-
cursive voxel propagation, to generate 3D skeletons. The al-
gorithm starts from a set of seed voxels, and then uses a
coding schema to construct connectivity relationship and a
distance field. Bitter et al.3 proposed a penalized-distance
algorithm to extract skeleton from volumetric data. The al-
gorithm first uses a distance field and Dijkstra algorithm to
locate an initial skeleton. Then, the skeleton is refined iter-
atively by discarding its redundant voxels. However, how to
determine the voxel size in the voxelization process to pre-
serve the fine feature of an object becomes a critical issue to
all the voxel based approaches.

A comparatively diverse one-dimensional skeleton extrac-
tion method is to use the Reeb graph. The definition of the
Reeb graph was introduced by Reeb17. The idea of Reeb
graph is to use a continuous function, usually a height func-
tion, to describe the topological structure and reveal the
topological changes (such as merging or splitting). How-
ever, it is easy to realize that using a height function to
construct Reeb graph does not guarantee the result to be
affine-invariant, which is very important in shape analysis.
Since we know that different functions may generate dif-

ferent Reeb graphs, Lazarus and Verroust10 use this idea
to construct Reeb graph skeleton by replacing the height
function with a geodesic distance function which is derived
from Dijkstra algorithm. They named the generated skele-
ton as level set diagram (LSD). Unfortunately, LSD is de-
pendent on its source points, so different LSDs may be pro-
duced from the same model. Mortara and Patané14 choose
the source points in high curvature regions to guarantee the
result is affine-invariant. In the aspect of real applications,
Hilaga et al.8 propose a technique called topology matching
by comparing the multiresolutional Reeb graphs (MRGs) of
3D objects to match their similarities.

3. Problem Analysis

In our previous work13, we tried to extract skeleton from 3D
objects with radial basis functions (RBFs). RBF is used to
build a distance field of a 3D object. We apply gradient de-
scent algorithm to locate local extremes in RBF, which are
branching or termination nodes in the generated skeleton.
RBF is a continuous function and it is a good property to be
able to use in gradient calculation. Nevertheless, how to con-
struct an RBF to preserve the shape property of an arbitrary
3D model is still worth more consideration.

In this paper, we try to use a different method called VRF
to locate local extreme positions. The VRF model is robust,
easy to implement and most of all, suitable for all kinds of
3D object representation (polygonal model, parametric sur-
face, etc.). If pointa is visible to pointb, we denote it as
a→ b. For a pointx which is in the interior of a surfaceS,
we define the visible setV(x) as

V(x) = {vi |vi → x,vi ∈ S}
Then, the VRF can be calculated as

−−→VRF(x) = ∑ f (‖vi −x‖2) ·
−−−−→
(vi −x) (1)

wherevi ∈ V(x). In here we takef (r) = r−2 as the New-
tonian potential function. One may imagine that all the 3D
model faces are charged planes. Pointx is a vertex charged
with negative energy and enclosed by the 3D model. The
point is pushed by electric-static force, which is the sum of
all repulsive forces derived from the visible charged planes.

A visual domain skeleton (VDS) ofSis defined asD(S) =
(Q,M), whereQ is the set of local minima in VRF andM is
a operator used to describe the topological relationship in
Q. As previous discussed, it can be imagined thatV(x) is
a visible charged surface andx is a negative charged point.
All negative charged points would finally converge to stable
positions in the force field. Therefore, we use a shrinking
method similar to the gradient descent algorithm to locate
these stable positions, which are also local minima. In Bit-
ter’s study3, local extremes can be geometrically viewed as
centers of the maximal inscribed spheres and this statement
is consistent with the definition of MAT. We name these local
minima as VDS nodes. Each pointpi on surfaceSconverge
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(a) (b) (c)

Figure 1: Illustrations of the skeletonization algorithm. (a) At pointx (the black point), radial parameterization is used to
sample the visible set. The black arrow represents the calculated VRF at that point. (b) For each vertex (in white color) on
the model, apply the VRF shrinking procedure to it until a local minimum (in gray color) is reached. These local minima are
regarded as VDS nodes. (c) Connect all adjacent VDS node pairs with the neighborhood relationship. The set ofM(1,2) is
colored in black.

(a) (b) (c) (d) (e) (f)

Figure 2: Radial parameterizations in the VRF local minima locating process. The images are generated by transforming
radial parameterizations into 2D maps. One may imagine that these images are range images taken from the inside of an object
(the lower the intensity, the longer the distance is). The coordinate of the white pixel in the map indicates the direction of the
calculated VRF.

to a VDS nodeq j , and we denote it asD(pi) = q j . Compara-
tively, for each VDS nodeq j , we denoteD−1(q j ) as a point
set on the surface which belongs toq j .

Connecting these VDS nodes according to their neighbor-
hood relationship on the object surface completes the skele-
ton. If pi and p j are two adjacent points on the surface,
we denote the neighborhood relationshipN as pi ∈ N(p j ),
and vice versa. Based on the neighborhood relationship, two
VDS nodesqi andq j are adjacent and need to be connected
if the set

M(qi ,q j ) = N(D−1(qi))
[

D−1(q j ) (2)

is not empty.

4. Skeletonization Algorithm

Our skeletonization algorithm can be stated as follows:

1. For each seed point on the surface, apply the VRF shrink-
ing procedure to it until a local minimum is reached.

2. Cluster the final positions of the seed points which are
gathered in a controlled error distance to become one
VDS node.

3. Connect all adjacent VDS node pairs with the neighbor-
hood relationship.

4. Output the final graph as skeleton.

4.1. Locating VRF Local Minima

We use radial parameterization, which is shown in Figure
1(a), to sample the visible set. The visible set is acquired
by calculating the intersection points of sampling rays and
polygons in the model7. Once the visible set is obtained, the
VRF can be derived by Formula 1. For each seed pointpi
on the surface, we first assign the initial position by pushing
pi into the interior of the object toward the reverse surface
normal direction, then apply the shrinking procedure:

pi+1 = pi +normalize(−−→VRF(pi))×step

wherestepis a small descent factor. Figure 2 shows the ra-
dial parameterizations of a seed point during the shrinking
procedure. The iteration stops when

|VRF(pi+1)|> |VRF(pi)|
and the final position ofpi is recorded as a VRF local mini-
mum. The whole procedure stops when all of the points re-
main in corresponding local minima. Figure 1(b) illustrates
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Figure 3: VRF local minimum locating process. Eight con-
vergence paths and a VRF local minimum in the center of a
unit cube model are shown in this figure.

the VRF local minimum locating process and Figure 3 shows
the result of this procedure.

4.2. Clustering

In practice, the final positions of the seed points may be close
to, but not exactly the same as where the local minima are.
The error distance between the final position of a seed and
its corresponding local minimum depends on the precision
of the descent step. Due to this reason, we merge the final
positions of the seed points in a given range to become one
single VDS node.

4.3. Connectivity Information

As we use the vertices of the 3D model to be initial seed
points, it is intuitive that the edges of a model become the
neighborhood relationship. As discussed in Formula 2, for
two VDS nodesqi and q j , they should be connected if
M(qi ,q j ) is not empty. We iteratively add edges until all ad-
jacent VDS node pairs are connected. Sometimes a small
amount of undesired connections may be produced and cur-
rently we just remove them manually. Figure 1(c) illustrates
the VDS node connection process.

4.4. Time Complexity Analysis

In the skeletonization process, the most time-comsuming
procedure is to locate VRF local minima. In this procedure,
the time complexity should be:

O(
n×s× t

k
)

wheren is the number of shrinking points,s is the visible set
sampling number,t is the number of faces in input model,k
is the stepping descent factor. By using an Octree structure
to speed up the calculation of visible set sampling we may

(a)

(b)

Figure 4: (a) VDS extracted from a model with 1,996 faces.
(b) VDS extracted from the same model with 7,984 faces. The
two skeletons are similar in appearance.

reduced the variablet to log(t). Therefore, the complexity
can be reduced to:

O(
n×s× log(t)

k
)

The other two procedures, clustering and node connecting,
can be implemented in constant time with auxiliary storage
structure.

5. Results

Six VDSs extracted from different models are shown in Fig-
ure 6 in colors. The execution statistics for each model is
shown in Table 1. Significant shape features are preserved
well in the skeleton representation. Since we invoke radial
parameterization to sample the surface, two models may
have similar VDSs regardless of the number of faces if they
are similar in shape. Figure 4 reveals this feature.
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(a) (b) (c) (d) (e) (f)

Figure 5: Deformation sequence of a hand model using the proposed visible domain skeleton (VDS).

Model Face Vertex Skeletonization Total Total
number number (sec.) VDS nodes VDS edges

Mouse 1,890 954 125 35 34

Bull 1,978 991 137 30 29

Octopus 2,000 1,002 53 68 60

Cobra 1,715 876 49 36 35

Frog 1,884 945 76 29 28

Horse 1,996 1,000 170 27 26

Horse (complex) 7,984 3,994 1,028 30 29

Table 1: Execution statistics on a desktop computer with Intel Pentium-4 processor running at 1.5 GHz and with 512 Mbytes
RAMBUS memory. The visible set sampling numbers is 197 and the stepping descent factork is 0.0025. All models are scaled
in a unit cube.

6. Conclusions and Future Work

In this paper, we propose an algorithm to extract skeleton
from arbitrary 3D objects. The generated VDS maintains
both topological and morphological information. We may
further apply an active contour model9 to the skeleton in
order to generate a deformed VDS for preserving the geom-
etry of the object13. Currently a simple object deformation
system has been implemented and it uses the VDS as the
deformation reference. It shows that the VDS is potential to
be applied to the computer animation applications. Figure 5
shows a deformation sequence of a hand model.

There are still many work need to be done. First one, and
is also the most important thing, is to fully automate the
skeletonization process. At the moment we need to remove
undesired connections by hand. We hope that this problem
can be solved in the future. Second, how to speed up the pro-
cess is also a critical concern. Currently, if the skeletoniza-
tion process takes large models (e.g. 10,000 faces) as inputs,
it takes more than 20 minutes to complete the execution. As
over 95% of the execution time is consumed by locating the
VRF local minima, how to speed up the visible set sampling
becomes a critical issue. Now we try to use Z-buffer (hard-
ware acceleration) to calculate the VRF.

It is anticipated that VDS can be used in many areas. Take
surface reconstruction as example. Since we may sample the
visible set at each VDS node and store the visibility map,
reconstructing the surface is simply done by recalling the
surface points from these visibility maps. One may also re-
gard VDS as a weighted connected graph; each node in the
graph has different weight value, which represents the vol-
ume in the object that belongs to the node. By matching two
weighted graphs, we may find the morphology similarities
between these two objects.
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Figure 6: Skeletons extracted from 3D models. (a) Mouse, (b) Bull, (c) Horse, (d) Frog, (e) Octopus and (f) Cobra.
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