
Real-time Voxelization for Complex Models

Zhao Dong Wei Chen Hujun Bao Hongxin Zhang Qunsheng Peng
State Key Lab of CAD&CG, Zhejiang University, 310027, Hangzhou, China

{flycooler, chenwei, bao, zhx, peng}@cad.zju.edu.cn

Abstract

In this paper we present an efficient voxelization al-
gorithm for complex polygonal models by exploiting
newest programmable graphics hardware. We first con-
vert the model into three discrete voxel spaces according
to its surface orientation. The resultant voxels are en-
coded as 2D textures and stored in three intermediate sheet
buffers called directional sheet buffers. These buffers are fi-
nally synthesized into one worksheet, which records the
volumetric representation of the target. The whole al-
gorithm traverses the geometric model only once and
is accomplished entirely in GPU (graphics process-
ing unit), achieving real-time frame rate for models with
up to 2 million triangles. The algorithm is simple to imple-
ment and can be integrated easily into diverse applications
such as volume based modelling, transparent render-
ing and collision detection.

1. Introduction

As an alternative to traditional geometric representation,
the volumetric representation plays an important role in
computer graphics community since the 1980s. It provides
a uniform, simple and robust description to synthetic and
measured objects and founds the basis of volume graph-
ics [19]. Conceptually, a reformulation process is required
to generate volumetric representation from geometric ob-
ject. This stage is typically calledvoxelization. It accom-
plishes the conversion from a set of continuous geometric
primitives to an array of voxels in the 3D discrete space that
approximates the shape of the model as closely as possi-
ble. This concept was first introduced by Arie Kaufman [20]
[18]. Since then its applications in diverse fields have been
broadly explored, including volume modelling [31], virtual
medicine [21], haptic rendering [22], visualization of geo-
metric model [32], CSG modelling [10], collision detection
[13] [2] [11] and 3D spatial analysis [1]etc.

There are many strategies to conduct voxelization. Ba-
sically, they can be classified as surface voxelization [5]

[28] [16] and solid voxelization [27] [12] methods. Another
common classification results in binary and non-binary vox-
elization approaches. The latter can be further divided into
filtered [30] [27], multivalued voxelization [8] [15], object
identification voxelization [16] and distance transform [26]
[29]. As the form of processed primitives is concerned,
there are methods for line [4], triangle [5], polygon [20]
[30] [17], CSG [10], parametric surface [18] [27] and im-
plicit surface [28] voxelization. Concerning the structure of
the volume, the result can be stored in the form of regu-
lar grid [31], general 2D lattices [26] or distance transform
[33].

Most previous work focuses on the sampling theory in-
volved in voxelization and rendering. By introducing well-
defined filters in the stages of voxelization and reconstruc-
tion, the rendering quality is greatly improved. However,
due to the rapid development of the modelling and sen-
sor technologies, the size and complexity of the models are
even larger. This puts high demands on the performance of
the voxelization algorithm, especially for time-critical ap-
plications such as virtual medicine, haptic rendering and
collision detection. Most of researchers rely on standard
graphics systems for fast voxelization. However, to our best
knowledge, achieving real-time frame rate for a moderate
size volume resolution is still a challenge. Thanks to mod-
ern graphics hardware [23] [24], its powerful flexibility and
programmability enlight us to overcome the problems in an
alternative way.

This paper describes a novel real-time voxeliza-
tion approach for polygonal surfaces as well as solid and
multi-valued voxelization. We decompose the task into
three stages, namely, rasterization, texelization and syn-
thesis which are accomplished entirely in GPU (graph-
ics processing units). The resultant volume is repre-
sented as one or multiple 2D textures in video memory
which can be reused conveniently. With mainstream graph-
ics card, it can convert millions of triangles or complex de-
formable models into a2563 volume at 10 fps or even
real-time.

The rest of this paper is organized as follows. Section 2
gives a brief review of related works. The voxelization al-

gorithm is outlined in section 3. The implementation details
are described in section 4. Section 5 presents our prelimi-
nary efforts to extend the fundamental algorithm to a flexi-
ble and configurable voxelization engine. Experimental re-
sults and technical discussions are given in section 6. Con-
clusions and future work are addressed in section 7.

2. Previous Work

The research focus of voxelization in 1990s were mainly
on modelling aspects such as robustness and accuracy. In
1993, S.Wanget al. [30] proposed voxelization filters and
normal estimation for accurate volume modelling. Many
efforts [28] [16] [27] were later introduced for improv-
ing the rendering quality by using enhanced normal vec-
tor estimation schemes and smoothing filters. In addition,
Dachille and Kaufman [5] presented an efficient approach
for incremental triangle voxelization. Recently, Haumont
and Warzee [12] proposed a solid voxelization method by
means of a 3D seed-filling approach. Widjayaet al. [33] ac-
complished the voxelization in general 2D lattices, includ-
ing hexagonal lattices and 3D body-centered cubic lattices.
More recently, Varadhanet al. [29] applied the max-norm
distance computation algorithm to determine whether the
surface of a primitive intersects a voxel.

Attentions have also been paid on the performance im-
provement. One effective way is to exploit the data coher-
ence and workload distribution in a shared memory mul-
tiprocessor [25]. As voxelization is basically a 3D scan
conversion process, it is natural to make use of rasteriza-
tion graphics hardware in parts of or the whole voxeliza-
tion pipeline. The slicing-based voxelization algorithm pre-
sented in [3] generates slices of the underlying model in the
frame buffer by setting appropriate clipping planes and ex-
tracting each slice of the model. These slices constitute the
final volume. The algorithm was later extended to a wide
range of 3D objects [8] [9] [10] and applications including
3D spatial analysis [1] and collision detection [2]. However,
its algorithmic complexity is proportional to the slice num-
ber of the resultant volume. Likewise, the technique pre-
sented in [6] projects the object to six faces of its bound-
ing box through standard graphics system for the outermost
parts and read back the information from depth buffer. Its
main disadvantage lies in the convexity requirement of the
processed model and hence restricts its usages.

Based on the concept of depth peeling [7], Heidelberger
et al. [15] [14] presented an effective algorithm for fast lay-
ered depth image (LDI) generation that can be extended to
voxelization. Though the algorithm achieves relative accu-
rate results, its performance is dominated by the scene com-
plexity and the scene depth complexity. And the accessed
depth-lists need to be sorted by CPU at each frame.

Typically, there are three deficiencies for graphics-
hardware-accelerated voxelization algorithms. First,
the performance decreases greatly following the in-
crease of the scene complexity and the volume resolution
since the model is traversed multiple times. Second, the ac-
cess of frame buffer demands high bandwidth between
main memory and video memory, which is still a heavy bot-
tleneck in modern graphics hardware. Third, the voxeliza-
tion results are directly stored in color or depth buffer and
cost lots of video memory. Therefore, it is difficult to af-
ford interactive frame rate at the volume resolution of
256×256×256. The algorithm presented in this paper aims
to address these three issues using programmable graph-
ics hardware, i.e, the algorithm complexity, the amount of
the data transfer and the storage/usage of the result vol-
ume.

3. The New Voxelization Algorithm

Without loss of generality, we present the algorithm by
instancing triangular mesh models in this section. It can eas-
ily be adapted to general surface models by slightly chang-
ing the voxelization pipeline.

Figure 1. Illustration of the voxelization of a
triangle.

A triangular mesh modelT is usually represented as a
sequence of vertices with their positions, normals and tex-
ture coordinates associated with a list of indices that form
each triangle. Assume a regularly sampled volumeP of
2L×2M×2N voxels with spacingd be defined in the bound-
ing box B of the model. A voxelpijk stands for vox-
elized values including occupancy, density, color and gra-
dient (Figure 1). The input of voxelization isT and its out-
put is an array of attributed voxelspijk(i = 0...L − 1, j =
0...M − 1, k = 0...N − 1).

3.1. The Key Idea

In the standard rasterization hardware, triangles are scan-
converted into a 2D frame buffer. Only the frontmost frag-

ments are kept in the frame buffer storing the rasterization
results. Whereas, voxelization is a 3D rasterization proce-
dure and hence a discrete voxel space is required. The voxel
space consists of an array of voxels that store all voxelized
values. It can be represented as 2D or 3D textures in graph-
ics hardware. Since writing directly to 3D texture is not
supported in mainstream graphics card of PC platform, we
choose to encode the volume in 2D texture. We call the tex-
ture worksheetas it records all voxelization information.
Note that each texel in the graphics card typically consists
of four components for red, green, blue and alpha channels
respectively. Depending on the bit-depth of each voxel, one
texel can represent one or multiple voxels. For instance, an
8-bit red component can store 8 voxels for binary voxeliza-
tion. The conversion from volume space to worksheet in-
vokes an encoding procedure calledtexelization. The stor-
age of worksheet equals the size of the volume. For exam-
ple, one2048×2048 texture with four components is suffi-
cient for binary voxelization at the resolution of5123. Note
that the width and length of a worksheet may be very large
and it might be divided into multiple patches. Each patch
has the same width and length as that of the volume which
corresponds to a slab of the volume along some axis direc-
tion (Figure 2). In high volume resolution cases, multiple
worksheets are needed.

To simplify the explanation, we suppose that one work-
sheet is used in following sections.

Volume

Worksheet

Patch

Slab

Slab

Slab

Slab

Figure 2. The worksheet versus the slabs of
the volume.

The conversion from the triangles to the discrete voxel
representation can be accomplished in programmable
graphics hardware. The volume is generated slab by slab.
In other words, the worksheet is filled patch by patch. For
each slab, only the triangles that intersect the slab are pro-
cessed. Each chosen triangle is rasterized against an
axis direction along which it has the maximum projec-
tion area. The position of each voxel is transformed to
its 3D volume coordinates immediately. These coordi-
nates are used to find the correct position in the worksheet.
Note that, the discrete voxel space is only a virtual con-

cept and is not explicitly represented. In order to add
a voxel to the worksheet, a blending operation is car-
ried out at corresponding location. When all triangles are
processed, the worksheet encodes the discrete voxel space.

The 2D rasterization in standard graphics hardware in-
volves a 2D linear interpolation process. If a triangle is
parallel to the rasterization direction, the interpolation pro-
cess results in a line segment in the discrete voxel space.
Therefore, a triangle should be rasterized along the direc-
tion that is most parallel to its orientation. And threedi-
rectional sheet buffersare used as intermediate space dur-
ing the rasterization and texelization procedures. Each sheet
buffer represents a part of the discrete voxel space. After
these sheet buffers are accomplished, an additional refor-
mulation process is performed to transcode them to the fi-
nal worksheet (Figure 3). In this stage, each element is first
transformed to the discrete voxel space and then encoded to
the appropriate texel in the worksheet. Actually, the work-
sheet reformulates the slabs of the volume along a desired
axis direction.

Discrete Volume Space

Sheet buffer along Z

Composited Worksheet

2D to 3D

Sheet buffer along X

Sheet buffer along Y

2D to 3D

2D to 3D3D to 2D

Figure 3. Synthesis of three directional sheet
buffers.

To sum up, the voxelization algorithm consists of three
stages as follows.

• Rasterization The triangles are rasterized to the dis-
crete voxel space.

• Texelization Each voxel is encoded and accumulated
in some directional sheet buffer.

• SynthesisThree sheet buffers are transcoded to the
worksheet representing the final volume.

3.2. Voxel Access

The simplest representation of voxelization is binary en-
coding that represents the occupiness of the triangles in the
voxel space. Since each voxel is mapped into the set of

(0, 1), one bit is used for a voxel. For multivalued voxeliza-
tion, more bits or bytes are required. For example, we can
store the vector quantized normals, texture coordinates or
colors in two, four bytes or even more bytes. It is also pos-
sible to encode the object identification or material identifi-
cation.

Suppose that the resolutions of the volume and work-
sheet are2L×2M×2N and2W×2H respectively. Therefore
2L×2M×2N=2W×2H×C whereC is the number of vox-
els encoded in a texel. For instance,C equals32 for bi-
nary voxelization if a texel is composed of four 8-bit com-
ponents. The numbers of patches alongx and y axis are
2W−L and2H−M . During rasterization, each patch corre-
sponds to a volume slab and is placed in the worksheet or-
derly. To render the volume, a list of proxy rectangles is
built like 2D slicing-based volume rendering. Every patch
of the worksheet is then fetched and texture mapped to con-
secutive layers of rectangles. Since one element of each
patch might encode multiple voxels, an efficient method to
store and fetch a voxel within the worksheet is required. Ac-
counting for this, four lookup operations are designed. Sup-
pose the volume coordinates of the voxel are(px, py, pz).
First, the corresponding patch is determined by dividingpz
with C. Thereafter, the texel in the(px, py) is accessed from
the found patch. Then, bit offset of correct component is de-
cided again bypz andC. Finally, a lookup table facilitates
accessing bits from a component.

3.3. Solid Voxelization

The algorithm described above is designed for surface
voxelization. To perform solid voxelization for closed ob-
jects, a 3D scan-filling operation similar to the 2D scan-
filling algorithm is required to fill voxels of the inner re-
gion of the object. It traverses the volume slice by slice and
line by line in a slice. Voxels on each scan line are checked
from left to right. A flag is set for each scan line to indi-
cate if the current voxel is inside the object or not. The flag
is initially set to false and it changes its value when the scan
line spans a voxel that intersects the boundary of the object.
To eliminate the errors caused by singular points, we per-
form scan-filling along three axis directions and then check
their common voxels.

4. Hardware Implementation

Programmable graphics hardware [23][24] makes the
computation in GPU flexible and adjustable. In particular,
our GPU supported algorithm exploits the following func-
tionalities and features:

• Huge Texture SizeThe width and length of a texture
can be2048×2048. It provides enough space to keep a
moderate size volume in the worksheet.

• Dynamic Vertex and Index Buffers Putting the ge-
ometric data in AGP memory and updating them dy-
namically do not pay large performance penalty.

• Multiple Render Targets In shader program, four ren-
der targets can be used simultaneously.

• Dependent Texture Fetching The accessed texel
value can be used to fetch another texture in the shader
program.

4.1. Dynamic Index Buffer Updating

As stated in section 3, the triangles are rasterized against
three directions depending on their orientations. An expen-
sive way is to traverse all the triangles of the model three
times and rasterize them to different worksheets by com-
paring their surface normals in shader program. Alterna-
tively, a preprocess can be performed to classify the geo-
metric primitives into three groups according to their sur-
face normals. Note that, the classification need be done only
once for static models. If the model is deformable, the clas-
sification should be conducted by updating the dynamic in-
dex buffer that locates in Accelerated Graphics Port (AGP)
memory. The fast transfer speed from AGP 8× to video
memory makes the dynamic updating in real-time.

Moreover, we can further divide the three groups into
multiple smaller sets to avoid traversing the whole model
for each volume slab. Each set bucket sorts the triangles that
intersect the slab. Similarly, for deformable objects the in-
tersection status of each triangle is checked dynamically.
During the rasterization, two clipping planes are set along
the slab borders to ensure accurate results. By means of
multiple render targets, we can rasterize multiple slabs si-
multaneously, yielding better performance.

In general, the performance penalty for dynamic index
buffer is low. And the model is traversed approximately
only once in rasterization stage.

4.2. Lookup Textures

Many lookup textures are utilized in our implementation
to replace the complex computation in shader program.

• Fetching One Bit One useful operation is to access
one bit. To fetch thekth bit of an 8-bit component, we
build a 256×8 lookup texture whose component is 0
or 1. Its(s, t) texel stores the value in thetth bit of s.
A simple texture fetching instruction accomplishes the
operation.

• Storing One Bit To store a bit into a component, an
8×1 texture is created. Itssth texel stores2s. By set-
ting the alpha blending operation as addition and the

source/destination blending factors as one/one, the re-
quired bit value can be put at correct location during
rasterization.

• Worksheet CompositionDuring the synthesis stage,
three directional sheet buffers should be composited to
one worksheet. This involves two transformations as
illustrated in Figure 3. One is the transformation from
2D sheet buffers along different directions to 3D voxel
space. The other transforms from the voxel space to
the final 2D worksheet destination. To speed up these
transformations, we build 2D textures that facilitate the
lookup from the source coordinates to the destination
coordinates. To compose the resultant volume along
z-direction in the worksheet, we make two lookup tex-
tures that help mapping each location of thex andy di-
rection sheet buffers to that ofz direction sheet buffer,
which is equivalent to the final worksheet. In fact, in
most cases, one element of the worksheet corresponds
to multiple consecutive voxels. And these voxels form
a line in the other sheet buffers. Consequently, we need
only build the lookup textures for the first voxel of
each element of the worksheet. The locations of other
voxels in thex,y directional sheet buffers can be ob-
tained by offsetting operations in shader program. This
scheme saves lots of memory in GPU.

4.3. Usages of the Resultant Volume

The resultant volume is represented as a worksheet in
video memory, and hence consecutive access of the volume
data are replaced by operating on 2D texture. For instance,
rendering of the volume can be accomplished conveniently
by accessing each internal voxel as described in Section 3.2.
If multiple objects are to be manipulated, we can keep two
resultant volumes as 2D textures simultaneously. Boolean
operations can be done pairwise by means of several shader
instructions.

However, if the resultant volume has to be processed off-
line, a frame buffer read operation from video memory to
host memory is required. The performance penalty is signif-
icant, especially for large size buffers. For512×512 resolu-
tion, the transfer costs 75ms in our testing platform. Hence
we recommend to use the volume in GPU directly.

4.4. Workload Distribution

Since the operations on textures are convenient in the
programmable context, the voxelization algorithm can be
extended to geometric forms other than triangles as well
as multipurpose volumetric manipulation tasks by slightly
changing the pipeline. Three stages serve transparently for
cumbersome voxelization and form an adjustable voxeliza-
tion engine. The voxelization engine accepts a list of ge-

ometric primitives from host applications. Its front/end in-
terface converts the primitives to vertex arrays that will be
handled directly. In many applications, only parts of mod-
els need be voxelized. The region of interests (ROI) could
be determined rapidly by updating index buffer dynamically
in CPU. Meanwhile, CPU accomplishes the normal-based
classification and bucket sorting for polygonal models. The
updated data is transferred through AGP port. In GPU, the
classified geometric primitives are rasterized in a stream-
ing mode. The results are encoded and stored as 2D tex-
tures in three direction sheet buffers. To render or access
some patch of the textures, a common technique is to create
a proxy rectangle and texture map the patch on it. In gen-
eral, the proposed voxelization engine distributes the work-
load in CPU and GPU as outlined in Figure 4.

GPU

CPU

Geometry Proxy Geometry Framebuffer Access

Interfaces to Applications

ROI Computation in AGP

Geometry Array

Rasterization

Texelization

Synthesis

{

Worksheets(2D Textures)

Applications:

Solid Voxelization

Volume-based Modelling

Transparent Ilustrations

 Collision Detection

Figure 4. The proposed voxelization engine.

5. Applications of the Algorithm

5.1. Voxelization of Other Forms of Surfaces

• Implicit Surface When host application computes the
ROI of the target surface, we generate a sequence of
rectangles embedded in the ROI and deal with them
from front to back. We rasterize each rectangle to a
render target. Every pixel in the render target repre-
sents a sampled point in 3D space. Its coordinates are

used to evaluate the implicit surface. If the result sat-
isfies given conditions, the pixel is output and trans-
formed to the worksheet subsequently. Generally, bi-
nary voxelization can be achieved by extracting the
defined iso-surface while solid voxelization involves a
procedure to find an interval that satisfies some inequa-
tion. Ideally, this method can handle very complex im-
plicit surface given that the shader program supports
enough long instruction slots.

• Parametric Surface The rasterization of parametric
surface is conducted in vertex shader instead of pixel
shader. We build a boodle of points that cover the para-
metric field. Each point is considered as a vertex to
be processed in vertex shader. Its texture coordinates
in parametric domain are used to calculate the posi-
tions in 3D space. These positions are transcoded to
the worksheet immediately.

• CSG Models The voxelization of CSG model is
straightforward. The nodes are first voxelized into re-
spective worksheets. Then the constructions are
done from bottom to top automatically in im-
age space since boolean operations on 2D textures are
well-defined by blending operations in GPU.

5.2. Transparent Illustration

Transparent illustration has been an open problem in
graphics community. Nevertheless, it becomes simple if
rapid voxelization is feasible. Our initial attempt is based
on the multivalued voxelization algorithm. Typically, we
can choose to store the combinations of the vector quan-
tized normals, texture coordinates and material identifica-
tions in the worksheet. By enabling the lighting in the
rendering stage, the appearance of the model can easily
shown. Furthermore, our voxelization engine can be inte-
grated seamlessly into a slicing-based volume rendering. By
rendering the volume data and voxelized slices orderly in
3D space, complex deformable geometric models are semi-
transparently shown in the volumetric scene. This technique
is very promising in surgical planning, intra-operation nav-
igation and radiation therapy.

5.3. Collision Detection

Collision detection is a fundamental issue in many fields.
We propose to transfer the intersection computation from
geometric space to image space by our voxelization algo-
rithm. We perform voxelization for the surfaces of the com-
mon parts of objects. Collision queries are carried out with
2D textures in image space. Since voxelization is no longer
the bottleneck, the collision detection can reach real-time
frame rate even for complex and deformable models. It can

handle arbitrarily-shaped geometries and the performance
is dependent entirely on the volume resolution.

6. Results and Discussions

Our experiments were carried out on a PC with a single
2.4 GHz Pentium IV CPU and 2GB RAM. An ATI Radeon
9800 Pro graphics card with 256MB RAM is equipped. All
shader programs are written in Vertex/Pixel Shader 2.0 of
Direct3D 9.0b version.

6.1. Performance

Table 1 lists the voxelization performance in millisec-
onds for models at the volume resolution of2563. The re-
spective images are illustrated in Figure 5 by assigning
different colors. The voxelization timing consists of three
parts, i.e, rasterization, texelization and synthesis. As the
algorithm traverses the model approximately once, its per-
formance is insensitive to the scene complexity. The raster-
ization timings depend on mainly the triangle numbers. For
the Blade model with 1,765,388 triangles, it costs about 75
ms. On the other hand, texelization and synthesis are im-
age space operations and their performances are dominated
by the volume resolution and the bit-depth of voxel.

In the 7th column, the preprocess timings for classifica-
tions are listed. It is also scene complexity-dependent. Note
that, the dynamic updating for normal-based classification
and bucket sorting take place only once for static models.
In the last column, we report the normal surface render-
ing timings that depend on the scene complexity only. We
do not list the performance of the visualization of the vox-
elized volume that depends mainly on the volume resolu-
tion and costs about 8 ms in average.

We tested our binary surface voxelization algorithm for
the Wagner model under different volume resolutions. The
model has 60,246 triangles and 30,215 vertices. Timing
statistics is reported in Table 2. To store the volume in one
worksheet, we represent a voxel using one bit for5123 res-
olution. It is clear that bit-operations are much more expen-
sive than byte-operations. Specifically, we encode each ver-
tex normal using 16 bits in1283 resolution.

6.2. Quality

The accuracy of the result is proportional to the vol-
ume resolution. Meanwhile, the bit-depth affects the per-
formance as well as the consumed memory. If multivalued
voxelization is required for high resolution volume, multi-
ple worksheets are used given that there are enough video
memory. If the blending operations for floating point tex-
tures are supported, less worksheets are needed and the per-
formance will improve dramatically. At the moment, we

Model #Triangles #Vertices Rasterization Texelization Synthesis Preprocess Surface Rendering
Duck 1,254 947 9.0ms 8.0ms 10ms 0.8ms 0.7ms
Hugo 16,928 8,634 9.7ms 8.3ms 10ms 7.0ms 0.8ms
Bunny 69,451 34,834 12.0ms 8.0ms 11ms 27.0ms 1.3ms
Dragon 871,326 439,370 38.0ms 8.0ms 11ms 330.0ms 10.8ms
Buddha 1,087,514 550,868 47.0ms 7.8ms 10ms 415.0ms 13.5ms
Blade 1,765,388 898,796 75.0ms 8.0ms 12ms 660.0ms 20.8ms

Table 1. Voxelization timings for different model sizes. Volume resolution: 2563, bit-depth: 8.

Resolution Bit-depth Memory Voxelization Points Result Rendering
5123 1 16MB 500ms 620,381 240ms
2563 8 16MB 30ms 151,347 10ms
1283 16 4MB 24ms 38,012 6ms
643 8 256KB 21ms 9,379 4ms

Table 2. Voxelization of timings for Wagner model in different volume resolutions.

conclude that2563 resolution with 8-bit depth voxel is a
good choice under current hardware conditions.

To demonstrate the versatility of the voxelization engine,
several preliminary experiments have been conducted. The
left part of Figure 7 shows two images of surface and solid
voxelization effects for an implicit surface (x4−5x2 +y4−
5y2 + z4 − 5z2 + 11.8 = 0). Both of them take 25ms. In
the right part of Figure 7, the voxelization effect of a trans-
parent cerebra model with 36,758 triangles and 29,371 ver-
tices is shown. After inserting it into an MRI head volume
data with the resolution of1283, the intermixing effect is
achieved by proposed hybrid volume rendering technique.
The frame rate is about 10 fps.

In our experiments, aliasing effects exist in solid vox-
elization for closed polygonal models. Prolonged lines ap-
pear where some voxels at the raterization stage are missing.
This shows the gap and difference between software-based
voxelization and graphics-hardware-accelerated algorithms.

6.3. Comparisons

There are two typical graphics-hardware-accelerated
methods, namely, the slicing-based voxelization [8] [9] and
layered depth image (LDI) extraction [14]. However, there
are two major differences. On one side, the slice-based vox-
elization method needs to rasterize the model the same
times as the resolution of the volume alongz direc-
tion. Though the results can be rendered to 3D textures
as the algorithm proposed, this feature has not been sup-
ported in consumer graphics hardware of PC platform.
Based on the experimental data reported in section 6.1,
the slicing-based voxelization method costs about 5 sec-

onds (20.8ms× 256) for the blade model at the resolution
of 2563.

On the other side, LDI approach reduces the traversal
number to the scene depth complexity. It is view-dependent
and is sensible to the model and needs to download the
depth images from video memory. The depth lists have to
be resorted pixel by pixel in CPU. Therefore, its efficiency
is affected by the volume resolution greatly.

7. Conclusions and Future Work

Fast or even real-time voxelization is essential for inter-
active graphics applications. We have presented a scheme
to solve this problem by representing the resultant volume
as 2D textures which can efficiently implemented. The ap-
proach is simple, robust and easy-to-implement. We believe
it will be a useful tool in the near future with the rapid
growth of graphics hardware performance.

As future work is concerned, an important issue is the
improvement of the voxelization quality, i.e, achieving sep-
arability, minimality robustness and accuracy simultane-
ously. The blending operations for floating point textures
are available with the launching of NVidia Geforce 6800 Ul-
tra. We would like to design more efficient voxelization al-
gorithm based on it. It is also inspiring if the graphics card
will provide 3D render target feature to avoidtexelization
operations. In addition, we intend to investigate enhanced
voxelization algorithms for line, curve and comprehensive
boundary representations such as point cloud models.

References

[1] S. Beckhaus, J. Wind, and T. Strothotte. Hardware-based
voxelization for 3d spatial analysis. InProceedings of the 5th
International Conference on Computer Graphics and Imag-
ing, pages 15–20, Canmore, Alberta, Canada, August 2002.
ACTA Press.

[2] M. Boyles and S. Fang. Slicing-based volumetric colli-
sion detection.ACM Journal of Graphics Tools, 4(4):23–32,
2000.

[3] H. Chen and S. Fang. Fast voxelization of 3d synthetic ob-
jects.ACM Journal of Graphics Tools, 3(4):33–45, 1999.

[4] D. Cohen-Or and A. Kaufman. 3D line voxelization and con-
nectivity control. IEEE Computer Graphics and Applica-
tions, 17(6):80–87, /1997.

[5] F. Dachille and A. Kaufman. Incremental triangle voxeliza-
tion. In Proceedings of Graphics Interface, pages 205–212,
May 2000.

[6] G. P. Evaggelia-Aggeliki Karabassi and T. Theoharis. A fast
depth-buffer-based voxelization algorithm.ACM Journal of
Graphics Tools, 4(4):5–10, 1999.

[7] C. Everitt. Interactive order-independent transparency.Tech-
nical report, NVIDIA Corporation., May 2001.

[8] S. Fang and H. Chen. Hardware accelerated voxelization.
Computers and Graphics, 24(3):433–442, 2000.

[9] S. Fang and H. Chen. Hardware accelerated voxelization.
Volume Graphics, pages 301–315, 2000.

[10] S. Fang and D. Liao. Fast csg voxelization by frame buffer
pixel mapping. InProceedings of the ACM/IEEE Volume
Visualization and Graphics Symposium 2000, pages 43–48,
Salt Lake City, UT, USA, October 2000.

[11] N. Gagvani and D. Silver. Shape-based volumetric collision
detection. InProceedings of the IEEE Symposium on Volume
visualization 2000, pages 57–61. ACM Press, 2000.

[12] D. Haumont and N. Warzee. Complete polygonal scene vox-
elization.ACM Journal of Graphics Tools, 7(3):27–41, 2002.

[13] T. He and A. Kaufman. Collision detection for volumetric
objects. InProceedings of IEEE Visualization 1997, pages
27–35. IEEE Computer Society Press, 1997.

[14] B. Heidelberger, M. Teschner, and M. Gross. Real-time volu-
metric intersections of deforming objects. InProceedings of
Vision, Modeling, Visualization 2003, pages 461–468, Mu-
nich, Germany, November 2003.

[15] B. Heidelberger, M. Teschner, and M. Gross. Volumetric col-
lision detection for deformable objects. April 2003.

[16] J. Huang, R. Yagel, V. Filippov, and Y. Kurzion. An accurate
method for voxelizing polygon meshes. InIEEE Symposium
on Volume Visualization, pages 119–126, 1998.

[17] M. W. Jones. The production of volume data from triangu-
lar meshes using voxelisation.Computer Graphics Forum,
15(5):311–318, 1996.

[18] A. Kaufman. Efficient algorithms for 3d scan-conversion of
parametric curves, surfaces, and volumes. InProceedings
of ACM SIGGRAPH 1987, pages 171–179, USA, July 1987.
ACM Press.

[19] A. Kaufman, D. Cohen, and R. Yagel. Volume graphics.
IEEE Computer, 26(7):51–64, 1993.

[20] A. Kaufman and E. Shimony. 3d scan-conversion algorithms
for voxel-based graphics. InProceedings of ACM Workshop
on Interactive 3D Graphics, pages 45–76, Chapel Hill, NC,
USA, October 1986. ACM Press.

[21] K. Kreeger and A. Kaufman. Mixing translucent polygons
with volumes. InProceedings of IEEE Visualization 1999,
pages 191–198, USA, October 1999.

[22] W. McNeely, K. Puterbaugh, , and J. Troy. Six degree-of-
freedom haptic rendering using voxel sampling. InProceed-
ings of ACM SIGGRAPH 1999, pages 401–408, 1999.

[23] Microsoft Corporation.DirectX 9.0 SDK, December 2002.
[24] NVIDIA Corporation. Cg specification, August 2002.
[25] C. E. Prakash and S. Manohar. Shared memory multiproces-

sor implementation of voxelization for volume visualization.
HPC for Computer Graphics and Visualization, 17(3):135–
145, 1995. (Proc. Eurographics’98).

[26] C. Sigg, R. Peikert, and M. Gross. Signed distance trans-
form using graphics hardware. In R. Moorhead, G. Turk,
and J. van Wijk, editors,Proceedings of IEEE Visualization
2003. IEEE Computer Society Press, October 2003.

[27] M. Sramek and A. Kaufman. Alias-free voxelization of ge-
ometric objects. IEEE Transactions on Visualization and
Computer Graphics, 5(3):251–267, 1999.

[28] N. Stolte. Robust voxelization of surfaces.Technical Report
TR.97.06.23, State University of New York at Stony Brook,
1997.

[29] G. Varadhan, S. Krishnan, Y. J. Kim, S. Diggavi, and
D. Manocha. Efficient max-norm distance computation and
reliable voxelization. InProceedings of the Eurograph-
ics/ACM SIGGRAPH symposium on Geometry processing,
pages 116–126. Eurographics Association, 2003.

[30] S. Wang and A. Kaufman. Volume sampled voxelization of
geometric primitives. InProceedings of IEEE Visualization
1993, pages 78–84. IEEE Computer Society Press, October
1993.

[31] S. Wang and A. Kaufman. Volume-sampled 3d modeling.
IEEE Computer Graphics and Applications, 14(5):26–32,
1994.

[32] R. Westermann, O. Sommer, and T. Ertl. Decoupling poly-
gon rendering from geometry using rasterization hardware.
In Proceedings of the 10th Eurographics Workshop on Ren-
dering, pages 53–64, 1999.

[33] H. Widjaya, T. Mueller, and A. Entezari. Voxelization in
common sampling lattices. InProceedings of Pacific Graph-
ics 2003, pages 497–501, Canmore, Alberta, Canada, Octo-
ber 2003.

Figure 5. Voxelization results for different models. Volume resolution: 2563.

Figure 6. Voxelization results for Wagner model under different resolutions.

Figure 7. Applications of the voxelization engine.

