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Abstract We propose a novel
hardware-accelerated voxelization
algorithm for polygonal models.
Compared with previous approaches,
our algorithm has a major advantage
that it guarantees the conservative
correctness in voxelization: every
voxel intersecting the input model is
correctly recognized. This property is
crucial for applications like collision
detection, occlusion culling and
visibility processing. We also present
an efficient and robust implemen-

tation of the algorithm in the GPU.
Experiments show that our algorithm
has a lower memory consumption
than previous approaches and is more
efficient when the volume resolution
is high. In addition, our algorithm
requires no preprocessing and is
suitable for voxelizing deformable
models.

Keywords Voxelization · GPU ·
Conservative correctness

1 Introduction
Voxelization [15, 21] denotes the reformulation process
that converts various boundary-based representations like
parametric surfaces and polygonal models into a volu-
metric representation, i.e., a 3D array of voxels. Dur-
ing the last decade, much effort has been devoted to
this topic and voxelization has been widely applied to
many applications, e.g., volumetric modeling [22], vir-
tual medicine [16], haptic rendering [18], collision de-
tection [3, 9, 12], 3D spatial analysis [2], physically-based
simulation [17] and real-time rendering [6].

With the rapidly growing power of modern graphics
hardware, hardware-accelerated voxelization has attracted
much research interest. The main idea is to use the ras-
terization functionality of graphics hardware to accelerate
voxelization. This is based on the fact that rasterization
and voxelization are similar scan-conversion operations.

∗This work was done while Wei Chen was a visiting scholar at Purdue
university.
∗∗This work was partially supported by NSF of China project (No.
60503056), the 973 program of China (No.2002CB312100) and the 863
program of China (No. 2006AA01Z314).

The common steps of hardware-accelerated voxeliza-
tion are illustrated in Fig. 1. First, each polygon of the
input model is projected onto the 2D viewing plane. Typ-
ically orthogonal projection is used to map the bound-
ing box of the model into the viewing volume. Subse-
quently, each projected polygon is rasterized. For each
resultant fragment, its screen coordinate (x, y) together
with its depth value z defines a voxel (x, y, z∗), where z∗ =
�z · resz�, and resz denotes the volumetric resolution along
the projection direction. The last step records the informa-
tion of the voxel in the fragment (x, y) of the frame buffer,
and is called volume encoding. Its core is a mapping be-
tween the fragment color and the corresponding voxels. The
bottom left image of Fig. 1 shows an example that uses four
color channels to represent the information of four voxels.

Previous hardware-accelerated voxelization algorithms
have a common problem: some voxels that intersect the
input model are missed. This is undesirable for some ap-
plications such as collision detection, occlusion culling
and visibility processing. For instance, conservative cor-
rectness is crucial in voxelization-based collision detec-
tion because it guarantees that two models do not intersect
if their voxelization results do not.
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Fig. 1. The common pipeline of hardware-accelerated voxelization
algorithms

One reason for the loss of voxels is that the standard
rasterization performed within GPUs does not generate all
fragments that intersect the projected polygon. This prob-
lem has been elegantly solved by the conservative raster-
ization algorithm [1, 11]. Another reason is that multiple
voxels intersecting a polygon may be projected into the
same fragment, in which case only one voxel is generated
by traditional techniques.

The main contribution of this paper is a novel tech-
nique that recovers all voxels corresponding to each raster-
ized fragment. By seamlessly incorporating some conser-
vative rasterization algorithm, we achieve conservatively
correct results. We present our approach as follows. Sec-
tion 2 gives a brief review of hardware-accelerated voxel-
ization algorithms. In Sect. 3 we outline our algorithm and
present an efficient and robust implementation in the GPU.
Section 4 presents an alternative solution to conservative
voxelization. The implementation details are described in
Sect. 5. Experimental results and technical discussions are
given in Sect. 6. Finally, we draw conclusions and high-
light future work in Sect. 7.

2 Related work

The slice-based algorithm [4, 8] is a pioneering work that
makes use of graphics hardware to accelerate voxelization.
It employs a multi-pass rendering technique to generate
the resultant volume slice by slice. In each pass, a pair of
near and far clipping planes is set and the geometry be-
tween the two planes is rasterized to generate a volume
slice. It is apparent that the pass number is identical to the
slice number, or the volume resolution along the projec-

tion direction. Thus, the efficiency decreases rapidly with
the increase of the volume resolution.

Karabassi et al. [14] proposed to project the input
model to six faces of its bounding volume. For each pro-
jection, the frontmost fragments are stored and later read
back from the depth buffer. This way, only six rendering
passes are required. The algorithm works well only for
convex objects, heavily restricting its usage in practical
applications.

Based on the concept of depth peeling [7], Heidel-
berger et al. [13] introduced a fast layered depth image
(LDI) generation approach, which can be extended to
voxelization. Though the algorithm achieves relatively ac-
curate results, its performance is greatly dependent on the
scene depth complexity. In addition, the accessed depth-
lists have to be sorted at each frame.

Dong et al. [5] first proposed to encode the information
of multiple voxels in one fragment, which dramatically re-
duces the rendering passes and increases the efficiency.
They also proposed to solve the aforementioned projection
artifact by voxelizing the model along three orthogonal di-
rections. Each polygon is projected along the direction in
which the projected polygon has the largest area. Then the
volumetric representations in three directions are compos-
ited to get the final results. A similar idea was adopted
in [17] to generate the complex boundary in fluid simula-
tion. The composition operation is, however, quite costly
in the GPU when the volume resolution is high. In add-
ition, it only partially alleviates the artifacts caused by pro-
jection and cannot ensure conservatively correct results.

Eisemann et al. [6] presented a scene voxelization ap-
proach for the purpose of rendering. Basically, they used
the same pipeline as [5]. The difference is that their ap-
proach performs perspective projection along only one
direction (the viewing direction), and hence achieves high
efficiency. This scheme misses a considerable number of
voxels, especially when the input polygon is nearly par-
allel to the viewing direction. The resultant artifacts are
negligible for most rendering applications, while they are
undesirable for other applications like collision detection.

A work that is related to our conservative voxeliza-
tion algorithm is the conservative rasterization technique
introduced by Hasselgren et al. [11]. Another solution to
conservatively correct rasterization was proposed in [1].
Conservative correctness in rasterization is of essential
importance for our algorithm. In practice, we adopt the
method of [11] and combine it with our approach.

3 The conservative voxelization algorithm

We introduce our algorithm in terms of triangular models.
For an arbitrary polygonal model, we first tessellate it into
a triangular model.

Under an orthogonal projection, a column of voxels
V(x, y) = {x, y, z|z = 0, . . . , zres − 1} are projected into
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Fig. 2a–f. Illustrations of previous GPU-based algorithms and our solution in 2D. a The input data; b multiple voxels are projected to
a single fragment; c the result by previous GPU-based techniques; d incorporating conservative rasterization. By computing the actual
depth range of each fragment (e), our approach yields conservatively correct results (f)

the same fragment (x, y) in the viewing plane. When
one triangle T intersects with multiple voxels in V(x, y),
only one fragment (x, y) will be generated by rasteriz-
ing the projected triangle T p (Fig. 2b). In other words,
each fragment (x, y) generated by rasterizing T p corres-
ponds to one or more voxels in V(x, y) that intersect the
triangle T .

As illustrated in Fig. 2c,d, previous approaches gen-
erate one voxel per fragment by using the depth value
in the fragment center. In contrast, we propose to com-
pute the exact intersection between the triangle T and the
prism formed by the column of voxels V(x, y). This is
identical to computing the depth range in the intersec-
tion region of the projected triangle T p and the fragment
rectangle R (see Fig. 3). If the depth range for some frag-
ment (x, y) is [zmin, zmax], this scheme results in a set
of voxels (x, y, z∗

min), (x, y, z∗
min + 1), · · · , (x, y, z∗

max),
where z∗

min = �zmin · resz� and z∗
max = �zmax · resz�. Fig-

ure 2e and f simply depict our key idea.
If the fragment R is fully covered by T p (called an in-

terior fragment), the depth range can be easily calculated.
Suppose that the depth value in the fragment center is zc and
the partial derivatives of the depth value are ( ∂z

∂x , ∂z
∂y ), the

minimal and maximal depth values will be zmin = zc −∆z,
zmax = zc +∆z, and ∆z = 1

2(| ∂z
∂x |+ | ∂z

∂y |).
In the case that R is partially covered by T p (this called

a boundary fragment), the computation is more compli-

cated. One simple scheme is to directly employ the depth
range derived above. This leads to over-conservative re-
sults, especially when the voxelizing triangle is nearly
parallel to the projection direction.

To obtain an accurate depth range, we need to consider
the intersection between R and T p. This is a polygon (de-
noted by I) with up to seven vertices as shown in Fig. 3a.
The polygon I is convex, and the maximal and minimal
depth values must appear on its vertices. We can compute
the depth values of all vertices and find the depth range.
As illustrated in Fig. 3b, the vertices of I consist of the
intersection points between the triangle and the fragment
rectangle, the vertices of the triangle that are inside the
fragment, and the vertices of the fragment that are inside
the triangle.

Fig. 3a,b. Intersection of a triangle with a fragment. a The intersec-
tion polygon has up to seven vertices; b three kinds of vertices of
the intersection polygon
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Let vmin be the vertex of R that satisfies z(vmin) =
minp∈R z(p). If vmin lies in T p, then zmin = z(vmin)
min = zc −∆z. Otherwise, the minimal depth value will
not appear in any vertex of R except if the vertex is on the
boundary of T p, i.e., it coincides with some intersection
point. The strict proof is presented in Theorem 1 in the
Appendix. Algorithm 1 summarizes the process to com-
pute the minimal depth value. The maximal depth value
can be evaluated in the same way.

Algorithm 1. Computing the minimal depth zmin
if vmin ∈ T p then

zmin ← z(vmin)
else

zmin ← HUGE_VALUE
for each intersection point Qi do

zmin ← min (zmin, z(Qi))
end for
for each vertex Pi of T do

if Pi ∈ R then
zmin ← min (zmin, z(Pi))

end if
end for

end if

3.1 Computing the minimal depth value

For the sake of simplicity, we use the following denota-
tions. The vertices of T p are denoted by Pi(xi, yi) and
the corresponding depth values are zi , i = 1, 2, 3. R =
[xmin, xmax; ymin, ymax]. The left, right, bottom and top
edges of R are denoted by eL , eR, eB and eT , respectively.

To determine whether vmin is inside or outside T p, we
compute the barycentric coordinate Cmin of vmin with re-
spect to T p. If and only if all three components of Cmin
are non-negative, vmin ∈ T p. Cmin is calculated by Cmin =
C −∆C, where C denotes the barycentric coordinate of
the fragment center, ∆C is the difference between C and
Cmin, and is computed as:

∆C = 1

2
· sign

(
∂z

∂x

)
· ∂C
∂x

+ 1

2
· sign

(
∂z

∂y

)
· ∂C
∂y

. (1)

The signed area of T p is:

S = x1 y2 − x2 y1 + x2 y3 − x3 y2 + x3 y1 − x1 y3. (2)

And we have

∂C
∂x

= (y2 − y3, y3 − y1, y1 − y2)

S

∂C
∂y

= (x3 − x2, x1 − x3, x2 − x1)

S
, (3)

and

∂z

∂x
= (z1, z2, z3) · ∂C

∂x
,

∂z

∂y
= (z1, z2, z3) · ∂C

∂y
. (4)

The computation of ∆C is performed in the vertex pro-
cessing stage. For each vertex Pi , we compute ∆C and
output C∗ = C(Pi)−∆C as a 3D vector1. Cmin is then
automatically obtained by a bilinear interpolation in the
rasterization stage.

The intersection between T p and R is obtained by
computing the intersection between each edge of T p and
each edge of R. For each pair of edges, we first calculate
the intersection point between their corresponding lines.
Let ax

ij = 1
xj−xi

, bx
ij = −xi

xj−xi
, ay

ij = 1
yj−yi

, by
ij = −yi

yj−yi
; the

intersection point Q of Pi Pj with eT is computed by

Q = L(Pi, Pj, t), t = ay
ij · ymax +by

ij, (5)

where L denotes the linear interpolation function. The
intersections between Pi Pj and other edges of R are com-
puted similarly. Subsequently, we examine whether Q is
on both edges. If this is true, we set z(Q) = L(zi, zj, t),
otherwise, we assign z(Q) a huge value. Finally, we com-
pute the minimal value among the depth values associated
with 12 intersection points.

Note that the GPU has native support to 4D vector
processing. It allows us to simultaneously compute the
intersection points between one edge of T p and four edges
of R. Likewise, the comparison of 12 depth values can
also be greatly accelerated. Specifically, it can be done by
four comparisons (two comparisons of two 4D vectors,
one comparison of two 2D vectors and one comparison of
two scalars).

3.2 Handling special cases

In computing the depth ranges, there are several ill-posed
cases that need to be handled carefully.

3.2.1 Intersection of parallel lines

The computation of the intersection of two lines becomes
numerically unstable when they are approximately paral-
lel. An example is illustrated in Fig. 4a. The edge Pi Pj

intersects with the fragment R at QL and QT . If Pi Pj is
nearly horizontal, i.e., yi ≈ yj, computing QT by Eq. 5
will result in a large error [20].

If we simply omit QT , the result may be no longer con-
servatively correct when QT has the minimal or maximal
depth value in the intersection region. Our solution is to re-
place QT with Q R, where Q R is the intersection point of
Pi Pj with the prolonged line of eR. This scheme does not
decrease the depth range because the depth value of QT
must be in the range of z(QL) and z(Q R). In addition, this
scheme is robust. As Pi Pj is nearly horizontal, Q R can be
correctly computed.

1 The barycentric coordinates for three vertices of T p are (1,0,0), (0,1,0)
and (0,0,1).
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Fig. 4a–c. Robust computation of the depth range. A gray dot
represents a vertex of the intersection polygon which cannot be
robustly computed. We replace it with the orange point which is
actually outside (but very close to) the intersection region. Three
ill-posed cases: a The edge Pi Pj is approximately parallel to one
edge of the fragment rectangle; b the edge Pi Pj is nearly degener-
ate; c the projected triangle is nearly degenerate

The practical implementation is as follows. When
| yj−yi

xj−xi
| is smaller than some threshold εI , we set ay

ij = 0,

by
ij = 2, to discard all intersections of Pi Pj with eT and eB.

Accordingly, we slightly enlarge R in its height to include
both QL and Q R. To determine whether a certain inter-
section point Q(x, y) is on eL or eR, we test whether it
satisfies ymin − εI ≤ y ≤ ymax + εI . The condition is al-
ways satisfied when Pi Pj intersects eT or eB.

3.2.2 Degenerate edges

Two vertices in a triangle may be projected to very
close positions. Figure 4b illustrates an example that
the near degenerate edge Pi Pj intersects eR at Q R.
As both |xj − xi | and |yj − yi| are considerably small,
the intersection of Pi Pj with all edges of R cannot be
correctly calculated. Moreover, all intersection points
(Q R in this example) must be omitted. To maintain the
conservative correctness, we assume that both vertices of
the edge are inside the fragment. The implementation is
similar to the former case. Given that |xj − xi | < εI and
|yj − yi| < εI , we consider the vertex Pk(xk, yk) of T p

to be inside R if and only if xmin − εI ≤ xk ≤ xmax + εI ,
ymin −εI ≤ yk ≤ ymax +εI .

3.2.3 Degenerate triangles

When a triangle is nearly parallel to the projection direc-
tion, the projected area S is extremely small. When |S| is
smaller than a certain threshold εS, both the barycentric
coordinate and depth derivatives cannot be reliably com-
puted. In other words, we can neither determine whether
a point is inside the projected triangle nor compute its
depth value. Figure 4c shows an example that the bot-
tom left vertex v1 of R is inside the triangle and has to
be removed. Based on Theorem 2 presented in the Ap-
pendix, we understand that there must be two intersec-
tion points, say QL and Q′

L , satisfying ‖QL −v1‖ ≤ √
2h,

‖Q′
L −v1‖ ≤ √

2h, where h is the minimal height of the
triangle. As |S| is small, h is also small. Similarly to the
above two cases, we can safely ignore v1 and adopt both
QL and Q′

L by slightly enlarging the fragment R.
In summary, we list the detailed implementation in

Algorithm 2. The computation is performed with vertex
processing and is duplicated three times for each triangle.
The next-generation GPUs support carrying out the com-
putation with geometry processing, which leads to higher
efficiency.

Algorithm 2. Robust computation of the depth range
Let xE and yE be the enlarged width and height of R
Let εm denote the machine error in GPU
xE, yE ← εm

for each edge Pi Pj in Triangle T p do
if |yj − yi | < max (εI , εI |xj − xi |) then

ay
ij ← 0, by

ij ← 2
yE ← max(yE, εI )

else
ay

ij ← 1
yj−yi

, by
ij ← −yi

yj−yi
end if
Compute ax

ij , bx
ij similarly.

end for
Compute the projected area S according to Eq. 2
if |S| < εS then

C∗ ← (−1,−1, −1)

xE ← max(xE,
√

2h), yE ← max(yE,
√

2h)
else

Compute C∗ according to Sect. 3.1
end if

4 An alternative approach

We tried another pre-computation based approach to cal-
culate the depth range. Each intersection point of the pro-
jected triangle with the fragment rectangle is assigned
a mark according to its location, where ‘L’, ‘R’, ‘B’,
‘T’ denote the cases that it lies on the left, right, bottom
and top edges of the fragment, respectively. The special
mark ‘N’ means that the intersection point does not exist.
The marks of six potential intersection points make up
an intersection code. The location of the vertex with ex-
treme depth value is then completely determined by the

Fig. 5. Example cases for the pre-computation scheme and the cor-
responding intersection codes



788 L. Zhang et al.

intersection code and the signs of ∂z
∂x and ∂z

∂y . Figure 5
shows some typical cases and the corresponding inter-
section codes. The vertices that potentially have minimal
or maximal depth value are marked as vi

min and vi
max,

i = 1, 2, 3, assuming ∂z
∂x > 0 and ∂z

∂y > 0. In all cases, the
minimal and maximal depth values will appear at no more
than three vertices. Accordingly, we can precompute the
locations of the extreme points for all cases and store them
as a lookup table for later access.

Intuitively, this scheme will run faster than the method
presented in the last section. However, it cannot be con-
veniently implemented in current graphics hardware. On
the one hand, the algorithm implies a switch-case like
program structure, whose implementation in hardware is
expensive. On the other hand, it is costly to compute the
locations of the intersection points. New hardware features
will probably overcome these problems and make this ap-
proach feasible.

5 Hardware implementation details

After obtaining the depth range of a fragment, we need to
recover the corresponding voxels and record the inform-
ation in the frame buffer.

5.1 Volume encoding

We adopt the encoding technique in [5], which records the
occupancy information of a voxel in one bit, where ‘1’
means that the voxel intersects with the input model
and ‘0’ means no intersection. In this way, a texel of
a texture with the ‘RGBA8’ format can be used to record
information for 32 voxels, and a resx × resy texture can be
used to record the voxelization result at the volume reso-
lution of resx × resy ×32. When the desired resolution resz
is larger than 32, we have to divide the volume into several
sub-volumes and perform voxelization in multi-passes. In
each pass, we use the OpenGL logical ‘OR’ operation
to encode multiple voxels intersecting with different tri-
angles into one fragment in the frame buffer, as in [6].

Given a depth range (zmin, zmax), a color value, or
bit-mask that represents the corresponding voxels is ob-
tained by a simple texture lookup. The texture that serves
as the lookup table is of size 32 ×32. It records the bit-
masks corresponding to all (z∗

min, z∗
max) pair, where z∗

min =
�zmin ×32�, z∗

max = �zmax ×32�. The texture is precom-
puted and stored in the video memory.

The number of required rendering passes can be effi-
ciently reduced by exploiting the ‘MRT (multiple render
targets)’ functionality of modern graphics hardware. This
enables multiple textures to be bound into the frame buffer
simultaneously. In our test platform, we can set up to
four render targets. This facilitates processing 128 slices
in a single pass. Accordingly, the lookup table texture
must be modified because the number of permutations of

z∗
min and z∗

max increases to 128 ×128. In addition, each
bit-mask consists of 128 bits and has to be stored in four
texels. In practice, we precompute all bit-masks and store
them in a 512×128 texture.

5.2 Combination with conservative rasterization

Ideally, conservative rasterization should be naturally sup-
ported by graphics hardware, which only requires a minor
modification to the hardware rasterization. Unfortunately,
such a feature is currently not supported. In practice, we
adopt the approach introduced in [11]. The basic idea is to
enlarge each triangle by half a pixel and draw the result-
ing bounding polygon. One can either draw the bounding
polygon directly, or draw an optimal bounding triangle
and cull the redundant fragments. We choose the second
scheme because it is more efficient in most of our experi-
ments.

6 Experimental results

We have implemented the proposed algorithm on a PC
with an AMD AthlonXP 3000+ CPU, 512 M RAM and
NVidia 6600 GT video card. The shaders are written in the
Cg shading language [19].

6.1 Accuracy analysis

Theoretically, our approach could lead to an accurate
voxelization result: a voxel is generated if and only if it
intersects the input model. In practice, it generates some
redundant voxels that actually have no intersection with
the model.

In Sect. 3.2, we discuss several special cases of the
computation of the depth ranges. When a certain vertex
of the intersection polygon cannot be robustly calculated,
we replace it with another point that is outside the inter-
section region. This scheme may lead to over-conservative
results. However, these special cases rarely take place in
our experiments. Meanwhile, the introduced voxelization
errors are small and negligible because the virtually added
vertices are very close to the intersection region.

The floating computation in GPUs has a limited pre-
cision, which leads to some errors in the computed depth
ranges2. To address this problem, we simply enlarge
the depth range by a small constant value (10−5 in our
implementation). This scheme may also lead to over-
conservative results, even if very rarely.

To verify our algorithm, we build a software-based
voxelization system that achieves conservatively correct
results by taking the exact intersection of triangles with
voxels. We compare the results with those generated by
our conservative voxelization algorithm running in the
GPU. For all tested datasets, our approach does not miss

2 Most GPUs support single precision floating computation.
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any voxel and the number of redundant voxels is no more
than 0.1% of the total number.

6.2 Performance analysis

Table 1 shows the configuration and timings for various
models under different volume resolutions. The major
time consumption lies in the computation of the depth
range for each fragment using Algorithm 1. The cost for
the interior fragments is low and much higher for the
boundary fragments. Although a large amount of frag-
ments are produced when the volume resolution is high,
the average cost for the fragment processing is not high
because most fragments are interior fragments. As a result,
our approach is very efficient for high volume resolutions.

On the contrary, however, our algorithm is not very
efficient for complex models, even when the volume
resolution is low. The reason is that voxelizing com-
plex models generates many boundary fragments, yielding
a high average cost of the fragment processing. It also
slows down the SIMD branching of the fragment pro-
cessing [10]. Decreasing the volume resolutions has little
effect because the number of the boundary fragments is no
less than the total triangle numbers with the conservative
rasterization scheme.

6.3 Comparison with Dong’s Method

The algorithm proposed by Dong et al. [5] is the fastest
voxelization algorithm so far that provides an approxi-
mately conservatively correct voxelization results. We
compare the efficiency of our algorithm with Dong’s algo-
rithm in Fig. 6.

For complex models and low volume resolution,
Dong’s approach runs faster than ours. This is because
Dong’s method does not compute the depth range for each
fragment, which is costly for complex models. Our ap-
proach outperforms Dong’s approach when the volume
resolution becomes higher. For high volume resolutions,
the cost is quite high. For example, at the volume reso-
lution of 5123, the time for composition is about 300 ms
(Fig. 6). Likewise, at the volume resolution of 10243,
composition will cost at least 2400 ms because there are
8 times more voxels at 5123. Apparently, composition
tends to be a heavy bottleneck with an increase of the
volume resolution.

Table 1. The voxelization timings in ms

Model #Triangle 1283 2563 5123 10243

Torus 1600 11.7 11.8 35.2 117.6
Mannequin 23 402 11.9 23.5 35.3 82.3
Bunny 69 451 35.3 35.3 47.0 94.1
Buddha 209 962 82.3 94.1 129.4 258.8
Hand 654 666 214.0 261.3 284.0 313.5
Dragon 871 326 294.0 353.0 360.0 418.3

Fig. 6. Performance comparison between Dong’s method and our
method. The testing models are listed in Table 1

Figure 7 compares the voxelization results generated
by our method and Dong’s method. The rendering of the
volumes is accomplished by blending the volume slices,
which are orthogonal to the viewing direction. The blue-
ness is proportional to the thickness of the volume. As
shown in the figure, our results contain more voxels than
those in Dong’s approach. The right column shows the dif-
ference between each pair of volumes.

Our approach has a lower memory consumption than
Dong’s method. Dong’s approach needs to store the vol-
ume representation in three directions and requires several
large-sized textures to serve as lookup tables for the com-
position operation. Instead, our approach stores the vol-
ume representation only in one direction and consumes
several small textures for lookup operations. In fact, run-
ning Dong’s method at a volume resolution of 10243

would be out of video memory in our test platform, while
ours supports even larger volume resolutions.

6.4 Application to collision detection

We develop a collision detection system based on the pro-
posed approach. By voxelizing two test models with a com-
mon bounding box, their intersection is efficiently obtained
through a direct comparison of the two resulting volumes.
Generally speaking, the error of collision detection is in-
versely proportional to the volume resolution. Because our
approach is efficient at high volume resolutions, high ac-
curacy of collision detection can be achieved. In addition,
our approach is conservatively correct, facilitating cor-
rect classification of colliding regions. The colliding vox-
els represent potential intersection regions and the non-
colliding voxels represent regions where two models do
not collide. Therefore, a large portion of regions where
two models do not collide can be efficiently pruned. Add-
itionally, our approach is suitable for the collision detec-
tion of deformable models because no pre-processing for
the deformation is required.
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Fig. 7. Comparison of our approach (left column) and Dong’s approach (middle column). The right column shows the differences. From
top to bottom: Mannequin, bunny, Buddha and dragon models

Figure 8 shows a collision detection example between
the Buddha model (209 962 triangles) and the MoHand
model (5399 triangles). The MoHand model keeps mor-
phing among three key frames. The voxelizations of the

two models take 94 and 12 ms at a volume resolution of
2563. The subsequent collision query costs 8 ms. In total,
the collision detection is accomplished in approximately
114 ms.
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Fig. 8. Interactive collision de-
tection based on conservative
voxelization

7 Conclusions and future work
In this paper we have investigated the problems induced
in the projection and rasterization stages of GPU-based
voxelization. We have proposed an easy-to-use technique
to achieve conservatively correct results. Our approach
traverses the handled model only once and yields high ef-
ficiency, as demonstrated in our experiments.

As far as future work is concerned, we would like to
try more efficient algorithms such as the one proposed
in Sect. 4 by using new graphics hardware features. We
shall also seek to exploit more useful applications of con-
servative voxelization. With the newest video cards, the
OpenGL logical operations are only available for 8-bit in-
teger textures. If logical operations for 16-bit or 32-bit
integer textures are supported, fewer rendering passes are
required and the performance will be improved dramati-
cally.

A Appendix

Theorem 1. Let f(x, y) be a scalar function defined inR2,
which satisfies that ∂ f

∂x and ∂ f
∂y are constants. Let R be

a rectangle, T be a triangle, and I be the nonempty in-
tersection region between R and T . Let v be a vertex

of R, v ∈ (I − δT ), where δT is the boundary of T . If
f(v) = minx∈I f(x), then f(v) = minx∈R f(x).

Proof. Let x be an arbitrary point in R. We have
f(x)− f(v) = (x − v) · ( ∂ f

∂x ,
∂ f
∂y ). Because v ∈ (I − δT ),

we can find some ε > 0, such that x′ = v + ε(x −v) ∈ I .
Then f(x′)− f(v) = ε(x −v) · ( ∂ f

∂x ,
∂ f
∂y ). Because f(v) =

minx∈I f(x), ε(x−v) · ( ∂ f
∂x ,

∂ f
∂y ) ≤ 0, and (x−v) · ( ∂ f

∂x ,
∂ f
∂y )

≤ 0. Therefore, f(x) ≤ f(v). ��
Theorem 2. Let l1 and l2 be two orthogonal straight
lines intersecting at point P, P ∈ ABC. The intersection
points of the two lines with the triangle are denoted by D,
E,F and G respectively. We must have PD ≤ ε, PE ≤ ε

or PF ≤ ε, PG ≤ ε, where ε = √
2h, and h is the minimal

height of ABC.

Proof. Without loss of generality, we assume that edge BC
is largest and AH is the corresponding height, AH = h.
Let � (l1, AH) = θ, � (l2, AH) = ϕ. From l1⊥l2, we know
that min(θ, ϕ) ≤ π/4. If θ ≤ ϕ, we create a line l′ pass-
ing D, l′//BC, and PI⊥l′, PI∩ l′ = I . Then PD = PI/ cos θ.
Since PI ≤ h and θ ≤ π/4, PD ≤ √

2h. Similarly, PE ≤√
2h. If ϕ ≤ θ, We can prove PF ≤ √

2h and PG ≤ √
2h in

the same way. ��



792 L. Zhang et al.

References

1. Akenine-Möller, T., Aila, T.: Conservative
and tiled rasterization using a modified
triangle set-up. ACM J. Graph. Tools 10(3),
1–8 (2005)

2. Beckhaus, S., Wind, J., Strothotte, T.:
Hardware-based voxelization for 3D spatial
analysis. In: Proceedings of the 5th
International Conference on Computer
Graphics and Imaging, pp. 15–20. ACTA
Press, Canmore, Alberta, Canada (2002)

3. Boyles, M., Fang, S.: Slicing-based
volumetric collision detection. ACM J.
Graph. Tools 4(4), 23–32 (2000)

4. Chen, H., Fang, S.: Fast voxelization of 3D
synthetic objects. ACM J. Graph. Tools
3(4), 33–45 (1999)

5. Dong, Z., Chen, W., Bao, H., Zhang, H.,
Peng, Q.: Real-time voxelization for
complex polygonal models. In: Proceedings
of Pacific Graphics 2004, pp. 43–50, IEEE
Comput. Graph. Soc. Press (2004)
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