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Abstract

This paper addresses the problem of virtual pedestrian autonomous navigation for crowd simulation. It describes
a method for solving interactions between pedestrians and avoiding inter-collisions. Our approach is agent-based
and predictive: each agent perceives surrounding agents and extrapolates their trajectory in order to react to po-
tential collisions. We aim at obtaining realistic results, thus the proposed model is calibrated from experimental
motion capture data. Our method is shown to be valid and solves major drawbacks compared to previous ap-
proaches such as oscillations due to a lack of anticipation. We first describe the mathematical representation used
in our model, we then detail its implementation, and finally, its calibration and validation from real data.

1. Introduction

This paper addresses the problem of virtual pedestrian au-
tonomous navigation for crowd simulation. One crucial
aspect of this problem is to solve interactions between
pedestrians during locomotion, which means avoiding inter-
collisions. Simulating interactions between pedestrians is a
difficult problem because its complexity grows rapidly with
respect to population density. Also, obtaining realistic re-
sults is challenging: humans are used to observe navigating
pedestrians in the real life and immediately detect artifacts in
simulations. We present a reactive navigation technique for
application in the domains of architecture, security, space
ergonomy, and also the entertainment industry. We expect
natural crowd motion emerging from a realistic microscopic
pedestrian simulation.

Our solution for solving interactions between pedestrians
is predictive and agent-based. Inputs are the definition of an
environment, the current state and the destination of each
pedestrian - destination is a desired direction derived from
a navigation plan. The method first checks on future inter-
actions between pedestrians: the evolution of pedestrians’
position is predicted from an extrapolation of their current
state. When needed, a long term avoidance motion is com-
puted by taking into account these predictions. Our resulting
microscopic pedestrian simulation model is calibrated and

validated using motion capture data. Data are acquired ac-
cording to two successive protocols. First, we measure inter-
actions between two participants and use the resulting data
to calibrate our model. In a second stage, we push the num-
ber of participants to the limits of our motion capture system
abilities and let them navigate among obstacles, allowing us
to compare the measured data with our simulation results.

Our first contribution is to solve major drawbacks in pre-
vious microscopic approaches, such as oscillations and jams.
We believe these drawbacks were due, firstly, to the lack
of anticipation, and secondly, to the simplicity of the reac-
tion computation technique from the observed situation. Our
second contribution is to propose a motion capture-based
calibration of the model and validation of our results. Val-
idation is generally done using hand-processed video se-
quences. Motion capture data are more accurate than those
derived from video sequences: this allows us to decompose
precisely in time and space how humans react to potential
collision with others. Particularly, we could extract a crite-
rion to detect the need for a reaction and compute adequate
corrections to the trajectory.

Section 2 states our contributions with comparison to pre-
vious approaches. Section 3 describes our method to solve
interactions between pedestrians from a technical point of
view: firstly, how it is integrated into a crowd simulator, sec-
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ondly, how pedestrians perceive their surrounding environ-
ment, and thirdly, how a reactive motion is computed. Sec-
tion 4 describes the protocols and the results of the exper-
iments used to calibrate the model parameters and to vali-
date the approach. We then present some simulation results
in usual architectural configurations. Finally, we conclude
and provide perspectives to our work.

2. Related Work

One of the most important skills of a human being is her
ability to navigate inside her environment. Even if this nav-
igation task is one of the most basic behavior in real life,
it is not yet solved correctly in a virtual world. First to al-
low people to navigate, they should be able to perceive their
environment but not only in a geometric way. Studies in psy-
chology and urbanism have shown that visibility and topol-
ogy are also important in the navigation task. A structured
and informed environment has to be used for path planning
and reactive navigation of virtual humans in real time. The
simplest task, for a pedestrian walking in a street, consists
in minimizing possible interactions, which mean avoiding
static and dynamic obstacles. Goffman [Gof71] describes
techniques used by pedestrians to avoid bumping into each
other. The social link between strangers is characterized by
silence and indifference and to perform that, different be-
haviors are used. The first technique called externalization
concerns the way that people are constantly making others
aware of their intentions in order to minimize the interac-
tion. Pedestrians selectively gather externalized information
from other people by a second technique called scanning.
The third technique, called the minimization of adjustment,
expresses that people adjust their trajectory several meters
before the conflict to make it perceptible early by others
with the objective to reduce interaction and avoid coordi-
nation. Goffman introduces the notion of an oval security
region whose front distance corresponds to an anticipation
area depending on the pedestrian speed, while the width is
the accepted gap to pass beside a person or an obstacle or
to follow a wall. He also defines the law of minimal change
meaning that a pedestrian will try in its journey to reduce the
amount and the amplitude of turns. These studies illustrate
the importance of prediction and anticipation in the naviga-
tion task.

It is known that in crowd motions, pedestrian flows walk-
ing in opposite direction generate their splitting to create dy-
namically some bands of pedestrians walking in the same
direction. When the density of pedestrians becomes very
high, it is possible to approximate the overall behavior of the
crowd by using the laws of fluid evolution [TCP06]. In panic
situations, pedestrians wish to move more quickly than usual
and, forgetting all social rules, accept to be in a physical con-
tact with their neighbors. Due to this physical interaction sit-
uation, they are developing a mimetic behavior consisting in
reproducing the behavior of preceding characters in the flow.

For Yamori [Yam98], this is obligatory followed by the no-
tion of regulation, learned as a normative element by people
living together inside the same macro structure or institu-
tion. However, as emphasized by Musse et al. [MT01], some
small groups can be the motor and modify the behavior of
biggest units such as a crowd, playing the role of the core
group. Boles [Bol81] has observed the existence of a band
structure inside a crowd of pedestrians moving on a sidewalk
and explain this by its optimal configuration to regulate op-
posite flows. One of the most crucial problems to be solved,
as pointed by Yamori, concerns the relation between micro-
scopic and macroscopic structures and behaviors inside the
crowd. The goal is to explain how an individual entity is con-
strained by the institution and on the other hand how the
community impacts on the individual behavior along time.
Yamori focuses his research in the formation of macroscopic
band structures and postulate that such kind of macroscopic
structure requires a critical density of population to emerge
from the set of individual behaviors.

Macroscopic simulation has been historically the first ap-
proach to be studied to simulate the pedestrian displace-
ment, due to its low calculation cost. In this approach the
pedestrian is not treated on its own but as a component of
a more macroscopic element [Hen71, PM78]. These macro-
scopic models are often used for animation purpose, like
by Sung et al. [SGC04], to provide a globally convincing
crowd motion. Another approach called microscopic simu-
lation consists in handling the individual navigation of all
moving entities. In that case, a system allowing dynamic col-
lision avoidance is necessary to achieve consistency and re-
alism. Several approaches can be distinguished such as parti-
cle and flocking systems. Particle systems are based on phys-
ical laws describing attractive and repulsive forces that can
be associated to obstacles and moving entities. Forces ap-
plied to an entity are summed to calculate its new motion di-
rection and speed [HFV00,BMdOB03,LKF05]. This model
assimilates the displacement of an entity in the case of a high
density to the motion of a particle inside a restricted area.
I. Peschl [Pes71] justifies the use of this model in the case
of an emergency situation with a high density of population.
Particle based models allow the generation of a macroscopi-
cally plausible behavior in case of a high density, but they do
not take into account anticipation, perception, or social rules.
Moreover, close inspection of individual trajectories show
some oscillations and unrealistic behaviors such as back-
ward motion of the last people repulsed by the preceding one
in a queue and many change of orientation along the path due
to the interaction with other moving entities and static obsta-
cles. Another drawback of this approach is its requirement of
a small time-step for convergence purpose. Flocks are rule-
based systems defining the behavior of an entity according
to the behavior of the nearest entities [Rey00, BLA02]. It is
well adapted for the collective motion of a group of animals
following a leader but less for the variety of behaviors that
can be observed in a sparsely populated crowd of humans.
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Loscos et al. [LMM03] use a fine regular grid to handle re-
active navigation and to store information about pedestrian
movements enabling the emergence of flows of pedestrians.
In the same way, Shao et al. [ST05] use a quadtree map for
the path planning and a fine regular grid for obstacle avoid-
ance.

Lakoba et al. [LKF05] argue that two points are necessary
to improve the existing models: add decision-making ca-
pabilities and compare simulation results against measured
data on pedestrian dynamics. Instead of classical models of
crowd simulation based on fluid dynamics or particle sys-
tems which are only valid in very dense crowds, S. Golden-
stein et al. [GKM∗01] have proposed a multi-layer approach
to model the behavior of crowd participants. We are also
working on a multilevel model of each human allowing us to
simultaneously take into account attraction/repulsion mech-
anisms such as in particle systems, dynamic computation of
the neighborhood for sparse crowds, the management of so-
cial rules, path planning and activity planning. In this paper,
we are focusing on the reactive navigation model and on the
use of experimental data to validate the approach and cali-
brate the model.

3. Prediction and Resolution of Interactions

3.1. Principle

Figure 1: The simulation architecture.

The problem of reactive pedestrian navigation is part of
the crowd simulation problem, and our method is included
in a global architecture as shown in Figure 1. More details
on the environment management and on dedicated path plan-
ning techniques we developed can be found in the litera-
ture [PDB05,PDB06]. The reactive navigation role is to steer
entities in a realistic manner with respect to two possibly
conflicting inputs: the goal of the considered pedestrian re-
sulting from the path planning stage, and the current state of
the environment, especially the presence of other pedestri-
ans. The output we search for are updated speed and orien-
tation allowing the pedestrian to avoid any static or moving
obstacle while satisfying constraints of realism.

Our approach to this problem is a predictive one. For each
entity, at desired rates, we search for a solution-move satisfy-
ing constraints and guaranteed to remain valid for a desired
time window (at least the period at which reactive naviga-
tion is invoked). The key-idea is to model the environment

Figure 2: Modeling the interaction between a reference en-
tity and a neighbor entity in the (x,y, t)-space. The pre-
dicted trajectory for the neighbor entity is the blue cylinder,
whereas the reachable space for the reference entity is the
violet cone. Their intersection delimited in black is a future
collision area (also projected in the plane).

as shown in Figure 2 in the (x,y, t)-space, with (x,y) the hori-
zontal plane and t the simulation time. We explore the reach-
able space of the reference entity in any direction and for a
range of speed values, and search for possible collisions with
neighboring entities. Figure 2 illustrates such an exploration
for a given reference entity speed value. As any move direc-
tion is envisioned, the reachable space is then represented
in the (x,y, t)-space as a cone whose opening angle depends
on the considered speed value. Neighboring entities are then
taken into account: they are represented as circles – whose
radii are the sum of both the reference and the considered
entity radii – moving along a predictive trajectory, computed
from the current position, speed and orientation of the neigh-
boring entity. Thus, the neighboring entity is modeled in the
(x,y, t)-space as an elliptic cylinder. Consequently, the in-
tersection of the cone and the cylinder delimits a collision
area that the reference entity shall avoid. The difficulty of
the problem is brought to mind looking at Figure 3, where
different shapes of the collision area are displayed accord-
ing to various solution speed values. Additionally, the figure
does not represent the possible presence of several neighbor-
ing entities and of static obstacles which obviously increase
the problem complexity drastically. As a result, we choose to
base our solution on a discrete-time expression of the same
modeling in order to avoid the problem complexity.

Three main steps, detailed in the next sections, allow us
to compute the best speed and orientation for the reference
entity:

1. Neighboring dynamic entities are first taken into account.
From this, we deduce some sets of speed and orientation
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Figure 3: We explore the reachable space for the reference
entity for a given range of speed. The opening angle of the
cone changes accordingly in the (x,y, t)-space, as well as
the intersection with the predicted trajectory of the neighbor
entity (each color corresponds to a different cone opening
angle, and thus to a different reference speed value).

ranges that allow collision free motion for a future time
window.

2. In the same manner, static obstacles are considered. We
deduce new valid sets of speed and orientation ranges.

3. Previous valid solution ranges are merged, scored and
compared. The best one is returned as the solution.

3.2. Dynamic entities

Figure 4: Example of reachable space sectioning for a given
time-interval. The resulting orientation section is character-
ized by several parameters: t1, t2,θ1,θ2,V1,V2.

The objective of this first step is to compute a set of valid
speed and orientation ranges for a given reference entity

Ere f , with respect to the presence of neighbor moving en-
tities. We describe our method for a single neighbor entity
Enhb, whilst the case of several ones is detailed Section 3.4.

Time discretization. We consider the environment state at
t = t0 and propose to search the Ere f reachable area for po-
tential collision as explained previously. For that, we con-
sider successively adjacent time-intervals having different
durations: [0,k0

∆t], [k0
∆t,k1

∆t], [k1
∆t,k2

∆t], [k2
∆t,k3

∆t],
etc. The ∆t > 0 parameter defines the precision of the dis-
cretization, smaller being the best, and should correspond to
the time needed by the entity to make one move. The k > 1
parameter is used to make the discretization non-uniform
over the anticipated time, greater being the best, allowing
the anticipation to be more precise in the near future than in
the distant one. We use ∆t = 1 and k = 2 in our model.

Reachable space sectioning. For each time-interval, we
predict the Enhb trajectory as a linear one and deduce the
Ere f orientation range (orientation section) potentially lead-
ing to a collision with Enhb as illustrated in Figure 4. We
finally get as many sections as the number of time-intervals,
each representing an orientation range for Ere f . The time-
interval [t1 t2] used to compute each section is stored.

Critical speeds computation. For each orientation section,
we compute the critical speeds V1 and V2 defined as follows:
V1 is the maximal speed allowed to avoid a collision by pass-
ing behind Enhb; V2 is the required minimal speed to avoid a
collision by passing before (in front of) Enhb. V1 and V2 have
analytical expression, as solution to the following equation:

V1 =
t2

min
t=t1

(
(
∥∥∥−−−−→Pr Pn(t)

∥∥∥−R)/t
)

V2 =
t2max

t=t1

(
(
∥∥∥−−−−→Pr Pn(t)

∥∥∥+R)/t
)

with Pn(t) = Pn + ~vn t and where ~vn is the Enhb speed vector,
Pr and Pn are respectively the positions of Ere f and Enhb at
t = t0, and finally R is the sum of the bounding circles radii
of the considered entities, eventually increased by a security
factor to avoid strict contact cases.

Figure 5: The sectioning results in overlapping orientation
ranges (left image). The merge of overlapping sections is
easily done by subdividing orientation ranges in order to get
adjacent sections (right image). The new characteristics of
each subdivision are directly deduced.
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Merging several sections. By iterating previous computa-
tion for each time-interval, we get a set of orientation sec-
tions with their own characteristics (V1, V2, time-interval
[t1 t2]). A problem is to merge overlapping sections. Sections
are finally subdivided in order to get a set of adjacent sec-
tions. Each new subsection characteristics are computed as
follow: V1new = min(V1i,V1 j), V2new = max(V2i,V2 j), t1new =
min(t1i, t1 j) and t2new = min(t2i, t2 j) with i and j indexing the
two merged orientation sections. Note that if three or more
sections overlap, this process can be reiterated successively
considering pairs of sections until all are merged.

3.3. Static entities

The second step of the reactive navigation module consists
of considering static obstacles. We handle static obstacles in
approximately the same way than dynamic entities, but the
problem is obviously simpler. In our environment database,
obstacles borders are modeled as line segments. Let us con-
sider the case of a single line segment in the vicinity of Ere f .
Our first objective is to subdivide Sobst as shown in Figure 6.
For that, we first compute P0 the nearest point from Ere f be-
longing to Sobst . We define points P1 and P′1 if existing so that
the length P0P1 = P0P′1 = vre f ∆t where vre f is Ere f speed,
and ∆t defined in the previous Section. Then, we define the
point P2 so that P0P2 = k1vre f ∆t, P3 so that P0P3 = k2vre f ∆t,
and finally P4 so that P0P4 = k3vre f ∆t. This set of points is
arbitrary, however, it allows us to evaluate the constrained
speeds toward the obstacle with a more accurate precision
near to Ere f .

Figure 6: Sections computation for static obstacles

A set of adjacent orientation sections are computed as
shown in Figure 6. We then compute the characteristics of
each section in a same way than done previously with dy-
namic entities. However, V1 is computed differently:

V1i =
∥∥−−−→PiEre f

∥∥/ t2i

where i indexes the considered orientation section. V1 is thus
the maximal speed at which Ere f can walk within the con-
sidered time-interval (depending on the considered section)
without colliding the obstacle, analogically to the previous
dynamic entity case. V2 is here meaningless, and we set
V2 = +∞.

3.4. Solving interactions

The third and final step of our reactive module consists of
extracting a solution-move for the reference entity. The ex-
traction is done in three successive steps. First, each orien-
tation section previously computed is weighted using a cost
function depending on sections characteristics. Second, su-
perposed sections (related to different neighboring entities
or obstacles) are merged (see Section 3.2) while accumulat-
ing costs. Third, the best section is used to compute the new
speed and orientation.

Orientation section cost. The reference entity has to
choose the best next speed and orientation according to the
environment state and its goal. The function cost reflects the
best choice among several criteria:

• Valid speed ranges (according to V1 and V2 of each sec-
tion) must be close to the entity desired speed Vdes and in
its range of achievable speeds [0;Vmax].

• Orientation section limits [θ1;θ2] must be as close as pos-
sible to the desired orientation θdes

• Required accelerations to reach the new speed and ori-
entations must be as limited as possible (limiting strictly
them is not desirable because real humans are capable of
important accelerations).

• The closer the section time-interval is in the future, the
more confident we are in its cost.

The cost associated to speed variations and distance to de-
sired speed is computed as follows:

Cdecel =
{

0 if Vdes ≤ V1

1− V1
Vdes

Caccel =
{

0 if Vdes ≥ V2
V2−Vdes

Vmax−Vdes

Cspeed = α.min(Caccel ,Cdecel)

where α ∈]0;1[ allows us to set a trade-off between speed
changes and orientation changes. The cost associated to ori-
entation changes (deviation) is computed as follows:

Cdev = (1−α)
1− cos(θ)

2
where θ is the minimum difference between the desired ori-
entation and the orientation section limit angles. Note that
0 ≤Cspeed +Cdev ≤ 1. According to t1 the lowest bound to
the time-interval of the concerned section, we finally com-
pute a prediction confidence cost:

Cpred = 1− t1
T +β

with 0≤Cpred ≤ 1

where T is the maximal considered time for the prediction,
and β ∈ [0;+∞] is a user-fixed parameter allowing us to get
more or less confidence in predictions (this will change the
pedestrian adaptation-time before a potential collision). The
total cost of a given section is then:

Ctotal = (Cspeed +Cdev).Cpred .Cadd

where 0 ≤ Cadd ≤ +∞ is an additive cost that can be in-
troduced to take into account external factors, e.g., walking
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close to another entity, preferential deviation to the left or
the right, etc. Neutral value is Cadd = 1.

Merging costs. Note, at this point, we have as many sec-
tionings (whole sets of orientation sections) as the number
of entities and static obstacles in the vicinity of Ere f . For
each section of each set, we now have a cost. In exactly the
same manner than presented in Section 3.2, we merge all the
weighted sections. The cost of each subsection thus created
is the sum of all the sections that were superposed and split
to create it.

The fittest subsection has the lowest cost. In the corre-
sponding range of valid speeds and orientations, we compute
the closest to the ones desired by the reference entity, which
is the final output to our reactive navigation module.

3.5. Discussion

Visibility of neighbor entities. As explained previously,
our model predicts neighbor entities trajectories in order to
decide on the best reaction to avoid them when necessary.
We demonstrate in the next Section that real humans act in
the same way, however, it is obvious they only do so for the
humans they could visually perceive. In order to get a realis-
tic reactive navigation, a perception field must be simulated.
Our model distinguish two cases. When a neighbor entity
is not seen because it is occluded by an obstacle, it is fil-
tered out of the selection. As a result, an occluded neighbor
entity has strictly no influence in the result. A limitation is
the case were two pedestrians invisible one to the other con-
verge toward the same place (e.g., at a street corner): they
stop abruptly when finally perceiving one another, whereas a
real human would anticipate this possibility and walks more
carefully. When a neighbor entity is not seen because it is
not in the field of view of the reference entity, we introduce
it in the model, but having a null speed. Indeed, we consider
that real humans feel someone is behind, but are unable to
predict any trajectory. This also avoids backward motions
provoking a collision with entities behind.

Connection with a locomotion animation module. As
seen in Figure 1, output of our reactive navigation module
is connected to a locomotion module. Our method may lead
to important speed or orientation changes from which a re-
alistic animation must be computed. In order to get as real-
istic animations as possible, we synchronize the animation
module and the reactive navigation module, so that changes
occur at the feet-land instants (left or right). Also, the loco-
motion module smooths variations itself.

4. Model Calibration and Validation

The previous Section described the technical basis of our
model: resulting trajectories mainly depend on the parame-
ters used in the cost functions (α,β). In order to get realistic

behaviors, a calibration of the model is required. In previ-
ous works, such a calibration is achieved by analyzing video
captures of real crowd motions. However, automatic analysis
techniques are not always applicable due to lighting condi-
tions, and analysis by hand requires great effort. Moreover,
pedestrians goals are generally unknown in video sequences,
which may prevent strict comparisons between real data and
simulations. For these reasons, we prefer to use a motion
capture system to collect our reference data, with protocols
defining the goals of each participant.

In a first experiment, we measure the interaction phe-
nomenon in the following situation: two pedestrians achieve
navigation tasks in an empty environment, we force them to
have more or less interacting trajectories and observe adap-
tations to avoid contact. Results allow us to demonstrate the
need for prediction in a realistic reactive navigation model
and to calibrate some crucial factors. Secondly, we attempt
to reproduce some typical crowd navigation situations at a
microscopic level, such as corridor following, gate crossing,
X-crossing, etc. in order to validate the model behavior in
more complex scenes. For that, we captured as many partic-
ipants as possible executing navigation tasks in an environ-
ment made of obstacles.

4.1. A protocol for model calibration: interactions
between two pedestrians

Figure 7: Four computers displaying signals to participants
controlling their start-time and goal. A motion capture sys-
tem retrieves resulting interactions.

The first experiment protocol allows us to control the
interaction of two participants walking in an obstacle-free
area, as illustrated in Figure 7. By interaction, we mean the

c© The Eurographics Association and Blackwell Publishing 2007.



S. Paris & J. Pettré & S. Donikian / Pedestrian Reactive Navigation for Crowd Simulation

required trajectory adaptations made by each participant in
order to avoid a collision. The objective of the experiment is
to qualify the avoidance strategies developed by the partic-
ipants given the conditions imposed by the protocol, and to
quantify the trajectory corrections made in terms of velocity
and orientation changes. For that, we place four computers
at the corners of a square area visible for a motion capture
system. Each participant must go from a given computer to
the diagonally opposite one. We get a temporal control on
the experiment by transmitting a start signal to participants
using computer displays. All computers are synchronized in
order to precisely control some delays between the start time
of each participant, and to provoke more or less important
interactions between them. We deduce the conditions for an
interaction to occur or not. Participants always see each other
but only perceive their own start signal. Finally, participants
are equipped with 34 markers to get full body motion capture
data. A total of 145 interactions were captured, 6 participants
where involved, we placed computers in order to form π/2
or π/3 angles between trajectories.

Figure 8: Horizontal trajectory of 2 interacting participants.

We detail our analysis method over a specific case whose
results are shown in Figures 8 and 9. Here, as it can be seen
in Figure 8 representing the horizontal trajectory of partici-
pants P1 and P2, a strong interaction occurred between ex-
periment times 60s to 66s: trajectories are conspicuously de-
formed in order to avoid collision. We joined the respective
positions of P1 and P2 at equivalent times (each half a sec-
ond) in order to provide a temporal indication of events. A
first look at the results leads one to think that participants
reacted late (t=62.5s), just before collision: P2 passes before
P1, P1 decelerates and turns to the left while P2 turns a little
to the left to facilitate the passage.

But motion capture data allow a more precise analysis and
the real intentions of participants appear clearly in Figure 9:
top and bottom plots are the speed and orientation of each
participant (respectively red and blue plots). In dashed hor-
izontal lines, we represent some mean reference values for

Figure 9: Orientation and speed variations of participants
P1 (top) and P2 (bottom). Comparing the predicted and
measured distances between participants allows to detect
the time of adaptation to avoid a collision (center).

speed and orientation, measured during experiments where
participants execute identical navigation tasks alone. We ob-
serve that two successive corrections finally compose this
interaction:

• t ∈ [61;62s]: P1 has a higher speed and deviates to the
right compared to mean reference values. This reveals her
first intention to pass before P2, who has a normal behav-
ior. But P2 naturally walks faster (looking at the reference
mean values) than P1 and this first strategy fails.

• t ∈ [62;62.5s]: P1 decelerates.
• t ∈ [62.5;64s]: A combined reaction is now clearly visi-

ble: P1 increases its deceleration and deviates to the left,
which will allow her to pass behind P2, who facilitates the
success of this new strategy by accelerating and deviating
to the left.

• t > 64s: After the time where distance between P1 and P2
is minimal, participants achieve their goal and no particu-
lar interaction is observable.

Previous analysis showed that corrections may appear
early in the experiments (P1 for t = 61 to 62s), and differ-
ences between reference and measured values may be minor
and hardly detectable. We introduce a criterion to both qual-
ify automatically situations of interactions in the different
experiments and answer a crucial question: are corrections
made by participants pertinent (i.e., does collision occurs if
no adaptation is made)? This will allow us to conclude on the
accuracy of participants in evaluating potential collisions.
Figure 9 illustrates our criteria: the red curve is the measured
distance between P1 and P2. The violet one is MinDistpred
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defined as follow:

Pred1,2(t,u) = Pos1,2(t)+(u− t)−→v1,2(t)

with t is the experiment time, u ∈ [t;∞] a parameter,
Pred1(t,u) and Pred2(t,u) are respectively the predicted po-
sitions of P1, P2 in the future time u, according to their cur-
rent position Pos1(t), Pos2(t) and speed vector −→v1 (t), −→v2 (t).

InterDistancepred(t,u) =‖ −−−−−−−−−−−−−→Pred1(t,u)Pos2(t,u) ‖

is the evolution of the distance between P1 and P2 according
to the previously predicted positions.

MinDistpred(t) =
∞

min
u=t

(
InterDistancepred(t,u)

)
The plots reveal that the anticipation of P1 was accurate.
Despite her initial faster speed and deviation to the right, she
would not have been able to avoid P2 with a minimum pre-
dicted inter-distance below 0.2m. Her change of strategy is
revealed when Mindist(t) is null at t = 62.1s (from "passing
in front of P2" to "passing behind P2").

By analyzing the whole set of experiments our first con-
clusions are:

• Reactions are observable for MinDistpred(t) < 0.5m,
which allows automatic distinction between cases where
interaction occurs or not.

• Anticipation is up to several seconds before a potential
collision. Our experimental conditions did not allowed us
to determine an upper bound to anticipation time because
of the size of the motion capture field.

• Reaction is a combination of speed and orientation adap-
tation. Deviations are bounded whereas decelerations can
lead to a complete stop for one of the participants. This
occurs especially when participants modify both their tra-
jectory so that MinDistpred(t) remains below 0.5m (con-
flicting corrections). The closer the collision is in time, the
more speed adaptation is preponderant.

• Interaction is an accurate phenomenon. If no collision is
predicted by our criterion, no reaction appears in data.
At the other extreme, participants detect interaction sit-
uations early.

We calibrate our model to synthesize interacting pedes-
trians trajectories in a realistic manner. Anticipation is set
to 8 seconds. In order to find a trade-off between perfor-
mance and precision, time is discretized in a non-uniform
manner (1s steps in the near future, up to 4s for the last pe-
riod). Minimal and maximal velocities to avoid a collision
are computed for a set of walking directions, allowing com-
bination of speed and orientation variations to avoid other
pedestrians. We tuned the cost function to fit experimen-
tal data in a pragmatic manner. Statistical analyses are still
on-going in order to calibrate the model automatically from
data. Moreover, we noticed individual factors and deeper
analyses should allow us to determine a variety of individual
profiles to calibrate our model.

4.2. A protocol for model validation: capturing
microscopic crowd phenomenon

Figure 10: A microscopic crowd phenomenon: crossing a
narrow passage with funnel shape.

In a second experiment, we capture 24 participants - each
equipped with 5 markers placed on the chest - navigating
in an area where we place static obstacles. The objective is
to reproduce some frequently encountered situations where
crowd flows meet, and to check for realistic emerging crowd
behaviors in simulations (such as lane formations in cor-
ridors where opposite pedestrians flows meet). Figure 10
illustrates an example of obstacles setup, superposed with
the set of recorded horizontal trajectories. Each participant
crosses the narrow passage from the right to the left, and
must circle the obstacle to reenter in the area from the right.
We tested several setups: X-crossing with several flow di-
rections repartitions, corridors with single or opposite flows,
gate crossing, etc. We can draw first conclusions from com-
parisons between simulations and real data. Characteristic
phenomenons could emerge from our model as observed in
real data such as lane formation in corridors where two op-
posite flows meet, pedestrians going in same directions at X-
crossing tend to group in order to facilitate their passing-by,
high speed changes occur where flows meet with visibility
limited by obstacles, etc. Thus, we validate qualitatively the
basis of our model. However, quantitatively, simulation and
real data still need to be accurately compared, and we are
currently performing a deeper analysis.

4.3. Discussion

From real data, we can discuss the limitations of our model.
During the calibration step, we found a balance between the
cost of direction changes and speed changes (α parameter of
the cost function Section 3.4) that allowed us to have similar
results in simulation and experiments with identical condi-
tions. However, we could not find a calibration that satisfies
all situations. Simulation results were still valid (no colli-
sion, and no dead-locks), but realism was decreasing in some
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specific situations. We think an always-valid calibration is
impossible to find for two reasons. First, our anticipation
time, T , is a constant parameter, whereas real humans act
in a more reactive way where population is dense. Second,
time-interval duration step, ∆t, is also a constant parameter
during the sectioning step (see Section 3.2). In other words,
our model precision is constant and should depend on the sit-
uation. We believe that these two model parameters should
be adapted according to local population density (at least) in
order to improve the realism of the results.

5. Results

Performance We have run a variety of situations reproduc-
ing the ones we motion captured, as shown in the accom-
panying video. Implementation is in C++ and simulations
ran on a Pentium M 1.6GHz, 1GB memory, with an Nvidia
4200Go 64MB graphics card.

Figure 11: Solution Performance. The blue curve plots the
computation time required for solving one interaction ac-
cording to the number of neighbor entities taken into ac-
count. The red curve plots the number of orientation sections
created in order to compute the solution. From these plots, it
is possible to compute global performances with respect to
the density of people.

The performance provided in Figure 11 does not corre-
spond to the computation time functions of the total number
of simulated entities, but to the computation time for one en-
tity according to the density of people. In fact, this density
of people implicitly defines the number of neighbor entities
to take into account for the computation. Moreover, the plot
limit of 21 surrounding entities has not been specified, but is
a result of our benchmarks using by far more entities in dif-
ferent situations (an average of 100 moving agents, plus the
walls). Then, the computation time for one entity, between
200 and 500 µs, may appear high compared to previous ap-
proaches, but is relatively stable for growing entities num-
bers. In addition, our model is only refreshed at each foot
step, corresponding to an average rate of 1− 2Hz. Thereby,
taking the worst cases, our model can easily handle 1,000
entities in real time, and its complexity is scalable and could

be reduced to simulate more entities by decreasing the antic-
ipation time. However, as previously mentioned, this model
is integrated in a whole virtual human architecture, manag-
ing other tasks like path planning, rational behavior, anima-
tion, and so on. Based on our experiments, we are able to
fully simulate and animate approximately 150 entities in real
time. Moreover, the performance depends on the complexity
of the environment, and on the density of the crowd, that
is why it is difficult to provide representative performance
considering the number of influent parameters.

Figure 12: Detailed view of a unit interaction case. Red ar-
rows are desired directions θdes while blue ones result from
the reactive navigation. Virtual humans adapt both their
speed and orientation in quite an optimal and realistic man-
ner to avoid each other (see video for animation).

Realism As mentioned Section 4.2, we could compare our
simulations with real data, however, a quantitative valida-
tion of our model is still in progress. Our first results are
promising. We solved several drawbacks observed in pre-
vious approaches. First, anticipated reactions in low density
areas improve results realism (Figure 12): in such cases, con-
flicting states (typically, close entities face to face) never ap-
pear in simulations. Indeed, thanks to a sufficiently stable
state of the environment, model predictions remain valid for
a large enough interval to always avoid any close interac-
tion. Second, in dense population situations, pedestrians do
not have jerky trajectories with successive and contradictory
reorientations or turn-backs. In this case, next-future predic-
tions are accurate enough to avoid such unrealistic behaviors
and dead-locks. However, distant time predictions appear to
be useless because of the constantly changing situation.

6. Conclusion and Perspectives

We presented a novel approach to solve interactions between
virtual pedestrians in the context of realistic crowd simula-
tions. Our first contribution is to introduce long-time pre-
dictions in our model when accounting for other pedestrians
moving around. Such a prediction allowed us to solve ma-
jor drawbacks of previous approaches to this known difficult
problem. Our second contribution is to propose experiments
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to validate and calibrate our approach using a motion cap-
ture system. Compared to video-streams analysis, we reach a
higher level of precision that allowed us to obtain a fine anal-
ysis of events occurring during real humans interactions. We
also captured crowd behaviors at a microscopic level in order
to validate our simulation results. Work is still in progress
concerning this last point.

Our results are promising and we can identify our model
limitations to get even more realistic results: this determines
our future work directions. First, we want to dynamically
adapt the model parameters to the variations of environment
context. Especially, the prediction time-ranges and precision
must fit the local population density. Second, the model does
not account for social factors. We want our model to be able
to consider couples of pedestrians or larger groups navigat-
ing among other pedestrians: such groups shall remain as
gathered as possible during their navigation. We believe our
implementation capable of supporting such evolutions eas-
ily, and work is underway. Finally, connections to the ani-
mation module must be enhanced. A feedback must emanate
from the locomotion module in order to score the proposed
reactions, purely in terms of realism of motion. This additive
cost would help in taking realistic decisions. Recent results
in animation evaluation techniques is an inspiration source
to reach such a goal.
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